示例#1
0
def test_hist_addition():


    bins = [-3, -2, -1, 0, 1, 2, 3]

    bounds = IntervalSet.from_list_of_edges(bins)

    contents = np.ones(len(bins) - 1)

    hh1 = Histogram(bounds, contents, is_poisson=True)

    hh2 = hh1+hh1

    assert np.all(hh2.contents == 2*hh1.contents)


    hh3 =  Histogram(bounds, contents, errors=contents)

    hh4 = hh3 + hh3

    with pytest.raises(AssertionError):

        hh3 + hh1


    hh5 = Histogram(bounds, contents, errors=contents, sys_errors=contents)

    hh6 = hh5 +hh5

    hh7 = hh5 + hh3

    hh8 = hh3 + hh5
示例#2
0
    def from_numpy_histogram(cls,hist,errors=None,sys_errors=None,is_poisson=False,**kwargs):
        """
        create a Histogram from a numpy histogram.
        Example:

            r = np.random.randn(1000)
            np_hist = np.histogram(r)
            hist = Histogram.from_numpy_histogram(np_hist)


        :param hist: a np.histogram tuple
        :param errors: list of errors for each bin in the numpy histogram
        :param sys_errors: list of systematic errors for each bin in the numpy histogram
        :param is_poisson: if the data is Poisson distributed or not
        :param kwargs: any kwargs to pass along
        :return: a Histogram object
        """

        # extract the contents and the bin edges

        contents = hist[0] #type: np.ndarray
        edges = hist[1] #type: np.ndarray

        # convert the edges to an interval set

        bounds = IntervalSet.from_list_of_edges(edges) #type: IntervalSet

        # return a histogram

        return cls(list_of_intervals=bounds,
                   contents=contents,
                   errors=errors,
                   sys_errors=sys_errors,
                   is_poisson=is_poisson,
                   **kwargs)
示例#3
0
    def _calculate_fwhm(self):
        """
        calculate the FWHM of the filters
        :return:
        """

        wmin = []
        wmax = []

        # go through each filter
        # and find the non-gaussian FWHM bounds

        for filter in self._filters:

            response = filter.response
            max_response = response.max()
            idx_max = response.argmax()
            half_max = 0.5 * max_response

            idx1 = abs(response[:idx_max] - half_max).argmin()

            idx2 = abs(response[idx_max:] - half_max).argmin() + idx_max

            # have to grab the private member here
            # bc the library does not expose it!

            w1 = filter._wavelength[idx1]
            w2 = filter._wavelength[idx2]

            wmin.append(w1)
            wmax.append(w2)

        self._wavebounds = IntervalSet.from_starts_and_stops(wmin, wmax)
def test_hist_addition():

    bins = [-3, -2, -1, 0, 1, 2, 3]

    bounds = IntervalSet.from_list_of_edges(bins)

    contents = np.ones(len(bins) - 1)

    hh1 = Histogram(bounds, contents, is_poisson=True)

    hh2 = hh1 + hh1

    assert np.all(hh2.contents == 2 * hh1.contents)

    hh3 = Histogram(bounds, contents, errors=contents)

    hh4 = hh3 + hh3

    with pytest.raises(AssertionError):

        hh3 + hh1

    hh5 = Histogram(bounds, contents, errors=contents, sys_errors=contents)

    hh6 = hh5 + hh5

    hh7 = hh5 + hh3

    hh8 = hh3 + hh5
示例#5
0
def test_hist_constructor():

    with within_directory(__this_dir__):

        bins=[-3,-2,-1,0,1,2,3]

        bounds = IntervalSet.from_list_of_edges(bins)

        contents = np.ones(len(bins) - 1)

        hh1 = Histogram(bounds, contents, is_poisson=True)

        assert hh1.is_poisson == True

        assert len(hh1) == len(bins)-1

        hh1.display()

        # rnum = np.loadtxt('test_hist_data.txt')
        #
        #
        # #rnum = np.random.randn(1000)
        # hrnum = np.histogram(rnum, bins=bins, normed=False)
        # hh2 = Histogram.from_numpy_histogram(hrnum, is_poisson=True)

        # hh3 = Histogram.from_entries(bounds,rnum)
        #
        # assert hh2==hh3

        hh4 = Histogram(bounds, contents, errors=contents)

        assert hh4.is_poisson == False


        with pytest.raises(AssertionError):

            hh4 = Histogram(bounds, contents, errors=contents,is_poisson=True)
示例#6
0
    def _calculate_fwhm(self):
        """
        calculate the FWHM of the filters
        :return:
        """

        wmin = []
        wmax = []

        # go through each filter
        # and find the non-gaussian FWHM bounds

        for filter in self._filters:

            response = filter.response
            max_response =  response.max()
            idx_max = response.argmax()
            half_max = 0.5 * max_response

            idx1 = abs(response[:idx_max] -
                         half_max).argmin()

            idx2 = abs(response[idx_max:] -
                         half_max).argmin() + idx_max

            # have to grab the private member here
            # bc the library does not expose it!

            w1 = filter._wavelength[idx1]
            w2 = filter._wavelength[idx2]


            wmin.append(w1)
            wmax.append(w2)

        self._wavebounds = IntervalSet.from_starts_and_stops(wmin,wmax)
def test_hist_constructor():

    with within_directory(__this_dir__):

        bins = [-3, -2, -1, 0, 1, 2, 3]

        bounds = IntervalSet.from_list_of_edges(bins)

        contents = np.ones(len(bins) - 1)

        hh1 = Histogram(bounds, contents, is_poisson=True)

        assert hh1.is_poisson == True

        assert len(hh1) == len(bins) - 1

        hh1.display()

        # rnum = np.loadtxt('test_hist_data.txt')
        #
        #
        # #rnum = np.random.randn(1000)
        # hrnum = np.histogram(rnum, bins=bins, normed=False)
        # hh2 = Histogram.from_numpy_histogram(hrnum, is_poisson=True)

        # hh3 = Histogram.from_entries(bounds,rnum)
        #
        # assert hh2==hh3

        hh4 = Histogram(bounds, contents, errors=contents)

        assert hh4.is_poisson == False

        with pytest.raises(AssertionError):

            hh4 = Histogram(bounds, contents, errors=contents, is_poisson=True)