示例#1
0
 def _initialize(self, trainParams=None, seed=None):
     # Set up untrained TICA
     self.tica = TICA(nInputs=prod(self.inputSize),
                      hiddenLayerShape=self.hiddenSize,
                      neighborhoodParams=self.neighborhood,
                      lambd=self.lambd,
                      epsilon=self.epsilon,
                      initWW=False)
     self.tica.initWW(seed)
示例#2
0
    #data = loadFromPklGz('../data/atari/mspacman_train_15_50000_3c.pkl.gz')
    data = loadFromPklGz('../data/atari/space_invaders_train_15_50000_3c.pkl.gz')
    data = data.T   # Make into one example per column
    #data = data[:,:5000]      # HACK!!!!!!!!!
    
    hiddenISize = 8
    hiddenJSize = 8
    lambd = .05
    neighborhoodSize = 1.5
    print '\nChosen TICA parameters'
    
    #hiddenISize = random.randint(4, 25+1)
    #hiddenJSize = random.randint(10, 30+1)
    #lambd = .1 * 2 ** random.randint(-5, 5+1)
    #neighborhoodSize = random.uniform(.1,3)
    #print '\nRandomly selected TICA parameters'

    for key in ['hiddenISize', 'hiddenJSize', 'lambd', 'neighborhoodSize']:
        print '  %20s: %s' % (key, locals()[key])
    
    random.seed(0)
    tica = TICA(imgShape = (15, 15, 3),
                hiddenLayerShape = (hiddenISize, hiddenJSize),
                neighborhoodParams = ('gaussian', neighborhoodSize, 0, 0),
                lambd = lambd,
                epsilon = 1e-5,
                saveDir = resman.rundir)
    tica.run(data, plotEvery = 50, maxFun = 300, normData = True, whiten = True)

    resman.stop()
    def learnNextLayer(self, params):
        nLayers = len(self.ticas)
        print 'StackedTica currently has %d layers, learning next' % nLayers

        # TODO: only works for one extra layer!
        Nw = 10
        Nwshift = 5
        Nsamples = 50000
        #Nsamples = 1000; print 'HACK!'

        # Get data and norm it
        nextLayerData = cached(makeNewData, self.ticas[-1], self.l1whitener, seed = 0,
                               isColor = self.isColor, Nw = Nw, Nwshift = Nwshift,
                               Nsamples = Nsamples)
        colNorms = sqrt(sum(nextLayerData**2, 0) + (1e-8))
        nextLayerData = nextLayerData / colNorms

        # Parameters
        if params['dataCrop']:
            print '\nWARNING: Cropping data from %d examples to only %d for debug\n' % (nextLayerData.shape[1], params['dataCrop'])
            nextLayerData = nextLayerData[:,:params['dataCrop']]
        if params['hiddenISize'] != params['hiddenJSize']:
            raise Exception('hiddenISize and hiddenJSize must be the same')
        hiddenLayerShape = (params['hiddenISize'], params['hiddenJSize'])
        neighborhoodParams = ('gaussian', params['neighborhoodSize'], 0, 0)
        if self.saveDir:
            layerLogDir = os.path.join(self.saveDir, 'layer_%02d' % (nLayers+1))
            os.makedirs(layerLogDir)
        else:
            layerLogDir = ''

        # Print/plot data stats
        if layerLogDir:
            pseudoImgShape = (int(sqrt(nextLayerData.shape[0])), int(sqrt(nextLayerData.shape[0])))
            plotImageData(nextLayerData, pseudoImgShape, layerLogDir, pc('data_raw'))
        printDataStats(nextLayerData)

        # Learn model
        tica = TICA(nInputs            = nextLayerData.shape[0],
                    hiddenLayerShape   = hiddenLayerShape,
                    neighborhoodParams = neighborhoodParams,
                    lambd              = params['lambd'],
                    epsilon            = 1e-5,
                    saveDir            = layerLogDir)

        manuallySkipExpensivePart = False
        if not manuallySkipExpensivePart:
            beginTotalCost, beginPoolingCost, beginReconstructionCost, grad = tica.cost(tica.WW, nextLayerData)

            tic = time.time()
            tica.learn(nextLayerData, maxFun = params['maxFuncCalls'])
            execTime = time.time() - tic
            if layerLogDir:
                saveToFile(os.path.join(layerLogDir, 'tica.pkl.gz'), tica)    # save learned model

            endTotalCost, endPoolingCost, endReconstructionCost, grad = tica.cost(tica.WW, nextLayerData)

            print 'beginTotalCost, beginPoolingCost, beginReconstructionCost, endTotalCost, endPoolingCost, endReconstructionCost, execTime ='
            print [beginTotalCost, beginPoolingCost, beginReconstructionCost, endTotalCost, endPoolingCost, endReconstructionCost, execTime]
        else:
            pdb.set_trace()

        # Plot some results
        #plotImageRicaWW(tica.WW, imgShape, saveDir, tileShape = hiddenLayerShape, prefix = pc('WW_iterFinal'))
        if layerLogDir:
            self.plotResults(layerLogDir, tica, nextLayerData, pseudoImgShape, hiddenLayerShape)

        self.ticas.append(tica)
    dataOrig        = whiteningStage.normalized2raw(dataWhite)

    # Visualize after prep
    plotImageData(dataWhite, imgShape, saveDir, pc('data_white'))
    plotCov(dataWhite, saveDir, pc('data_white'))
    printDataStats(dataWhite)


    #########################
    # Model
    #########################

    random.seed(randSeed)
    tica = TICA(nInputs            = prod(imgShape),
                hiddenLayerShape   = hiddenLayerShape,
                neighborhoodParams = neighborhoodParams,
                lambd              = lambd,
                epsilon            = epsilon,
                saveDir            = saveDir)

    plotImageRicaWW(tica.WW, imgShape, saveDir, tileShape = hiddenLayerShape, prefix = pc('WW_iter0'))
    plotRicaActivations(tica.WW, dataWhite, saveDir, prefix = pc('activations_iter0'))
    plotRicaReconstructions(tica, dataWhite, imgShape, saveDir, unwhitener = whiteningStage.normalized2raw,
                            tileShape = hiddenLayerShape, prefix = pc('recon_iter0'))
    
    tica.learn(dataWhite, maxFun = maxFuncCalls)
    saveToFile(os.path.join(saveDir, 'tica.pkl.gz'), tica)    # save learned model

    plotImageRicaWW(tica.WW, imgShape, saveDir, tileShape = hiddenLayerShape, prefix = pc('WW_iterFinal'))
    plotRicaActivations(tica.WW, dataWhite, saveDir, prefix = pc('activations_iterFinal'))
    plotRicaReconstructions(tica, dataWhite, imgShape, saveDir, unwhitener = whiteningStage.normalized2raw,
                            tileShape = hiddenLayerShape, prefix = pc('recon_iterFinal'))
def runTest(saveDir, params):

    import time, os, sys
    from numpy import *
    from GitResultsManager import GitResultsManager
    #raise Exception('path is %s' % sys.path)
    #raise Exception('version is %s' % sys.version_info)
    #raise Exception('cwd is %s' % os.getcwd())
    from tica import TICA
    from util.misc import MakePc, Counter
    from visualize import plotImageData, plotCov, plotImageRicaWW, plotRicaActivations, plotRicaReconstructions
    from util.dataPrep import PCAWhiteningDataNormalizer, printDataStats
    from util.dataLoaders import loadAtariData, loadUpsonData, loadUpsonData3, loadRandomData, saveToFile
    #counter = Counter()
    #pc = lambda st : makePc(st, counter = counter)
    pc = MakePc(Counter())

    #########################
    # Parameters
    #########################
    hiddenISize = params['hiddenISize']
    hiddenJSize = params['hiddenJSize']
    neighborhoodParams = ('gaussian', params['neighborhoodSize'], 0, 0)
    lambd = params['lambd']
    epsilon = 1e-5
    maxFuncCalls = params['maxFuncCalls']
    randSeed = params['randSeed']
    whiten = params['whiten']
    dataCrop = params['dataCrop']

    dataLoader = locals().get(
        params['dataLoader'])  # Convert string to actual function
    dataPath = params['dataPath']
    imgShape = params['imgShape']

    hiddenLayerShape = (hiddenISize, hiddenJSize)

    #########################
    # Data
    #########################

    # Load data
    #data = loadAtariData('../data/atari/mspacman_train_15_50000_3c.pkl.gz'); imgShape = (15,15,3)
    #data = loadAtariData('../data/atari/space_invaders_train_15_50000_3c.pkl.gz'); imgShape = (15,15,3)
    loaded = dataLoader(dataPath)
    if type(loaded) is tuple:
        data, labels, labelStrings = loaded
        print 'Data has labels:', labelStrings
    else:
        data = loaded
        labels, labelStrings = None, None
        print 'Data does not have labels.'
    if dataCrop:
        print '\nWARNING: Cropping data from %d examples to only %d for debug\n' % (
            data.shape[1], dataCrop)
        data = data[:, :dataCrop]
    nInputs = data.shape[0]
    isColor = len(imgShape) > 2

    print '\nParameters:'
    for key in [
            'nInputs', 'hiddenISize', 'hiddenJSize', 'neighborhoodParams',
            'lambd', 'epsilon', 'maxFuncCalls', 'randSeed', 'dataCrop',
            'dataLoader', 'dataPath', 'imgShape', 'whiten'
    ]:
        print '  %20s: %s' % (key, locals()[key])
    print

    skipVis = True
    if whiten:
        if not skipVis:
            # Visualize before prep
            plotImageData(data, imgShape, saveDir, pc('data_raw'))
            plotCov(data, saveDir, pc('data_raw'))
        printDataStats(data)

        # Whiten with PCA
        whiteningStage = PCAWhiteningDataNormalizer(data, saveDir=saveDir)
        dataWhite, junk = whiteningStage.raw2normalized(data, unitNorm=True)
        #dataOrig        = whiteningStage.normalized2raw(dataWhite)
        dataOrig = data
        data = dataWhite

    if not skipVis:
        # Visualize after prep
        plotImageData(data, imgShape, saveDir, pc('data_white'))
        plotCov(data, saveDir, pc('data_white'))
    printDataStats(data)

    #########################
    # Model
    #########################

    random.seed(randSeed)
    tica = TICA(nInputs=prod(imgShape),
                hiddenLayerShape=hiddenLayerShape,
                neighborhoodParams=neighborhoodParams,
                lambd=lambd,
                epsilon=epsilon,
                saveDir=saveDir)

    beginTotalCost, beginPoolingCost, beginReconstructionCost, grad = tica.cost(
        tica.WW, data)

    tic = time.time()
    tica.learn(data, maxFun=maxFuncCalls)
    execTime = time.time() - tic
    saveToFile(os.path.join(saveDir, 'tica.pkl.gz'),
               tica)  # save learned model

    plotImageRicaWW(tica.WW,
                    imgShape,
                    saveDir,
                    tileShape=hiddenLayerShape,
                    prefix=pc('WW_iterFinal'))
    plotRicaActivations(tica.WW,
                        data,
                        saveDir,
                        prefix=pc('activations_iterFinal'))
    unwhitener = whiteningStage.normalized2raw if whiten else None
    plotRicaReconstructions(tica,
                            data,
                            imgShape,
                            saveDir,
                            unwhitener=unwhitener,
                            tileShape=hiddenLayerShape,
                            prefix=pc('recon_iterFinal'),
                            number=20)

    endTotalCost, endPoolingCost, endReconstructionCost, grad = tica.cost(
        tica.WW, data)

    print 'beginTotalCost, beginPoolingCost, beginReconstructionCost, endTotalCost, endPoolingCost, endReconstructionCost, execTime ='
    print[
        beginTotalCost, beginPoolingCost, beginReconstructionCost,
        endTotalCost, endPoolingCost, endReconstructionCost, execTime
    ]
    results = {
        'beginTotalCost': beginTotalCost,
        'beginPoolingCost': beginPoolingCost,
        'beginReconstructionCost': beginReconstructionCost,
        'endTotalCost': endTotalCost,
        'endPoolingCost': endPoolingCost,
        'endReconstructionCost': endReconstructionCost,
        'execTime': execTime
    }

    # Save locally just in case of exception in main program
    myResults = {'params': params, 'results': results}
    saveToFile(os.path.join(saveDir, 'myresults.pkl.gz'), myResults)

    return results