def __init__(self, kernel_support=None, kernel_size=10, kernel_discretization=None, tol=1e-5, max_iter=100, print_every=10, record_every=10, verbose=False, n_threads=1): LearnerHawkesNoParam.__init__(self, n_threads=n_threads, verbose=verbose, tol=tol, max_iter=max_iter, print_every=print_every, record_every=record_every) if kernel_discretization is not None: self._learner = _HawkesEM(kernel_discretization, n_threads) elif kernel_support is not None: self._learner = _HawkesEM(kernel_support, kernel_size, n_threads) else: raise ValueError('Either kernel support or kernel discretization ' 'must be provided') self.baseline = None self.kernel = None self.history.print_order = ["n_iter", "rel_baseline", "rel_kernel"]
def __init__(self, max_mean_gaussian, n_gaussians=5, step_size=1e-7, C=1e3, lasso_grouplasso_ratio=0.5, max_iter=50, tol=1e-5, n_threads=1, verbose=False, print_every=10, record_every=10, approx=0, em_max_iter=30, em_tol=None): LearnerHawkesNoParam.__init__(self, verbose=verbose, max_iter=max_iter, print_every=print_every, tol=tol, n_threads=n_threads, record_every=record_every) self.baseline = None self.amplitudes = None self.n_gaussians = n_gaussians self.max_mean_gaussian = max_mean_gaussian self.step_size = step_size strength_lasso = lasso_grouplasso_ratio / C strength_grouplasso = (1. - lasso_grouplasso_ratio) / C self.em_max_iter = em_max_iter self.em_tol = em_tol self._learner = _HawkesSumGaussians( n_gaussians, max_mean_gaussian, step_size, strength_lasso, strength_grouplasso, em_max_iter, n_threads, approx) self.verbose = verbose self.history.print_order += ["rel_baseline", "rel_amplitudes"]
def __init__(self, integration_support, C=1e3, penalty='none', solver='adam', step=1e-2, tol=1e-8, max_iter=1000, verbose=False, print_every=100, record_every=10, solver_kwargs=None, cs_ratio=None, elastic_net_ratio=0.95): try: import tensorflow except ImportError: raise ImportError('`tensorflow` >= 1.4.0 must be available to use ' 'HawkesCumulantMatching') self._tf_graph = tf.Graph() LearnerHawkesNoParam.__init__( self, tol=tol, verbose=verbose, max_iter=max_iter, print_every=print_every, record_every=record_every) self._elastic_net_ratio = None self.C = C self.penalty = penalty self.elastic_net_ratio = elastic_net_ratio self.step = step self.cs_ratio = cs_ratio self.solver_kwargs = solver_kwargs if self.solver_kwargs is None: self.solver_kwargs = {} self._cumulant_computer = _HawkesCumulantComputer( integration_support=integration_support) self._learner = self._cumulant_computer._learner self._solver = solver self._tf_feed_dict = None self._events_of_cumulants = None self.history.print_order = ["n_iter", "objective", "rel_obj"]
def __init__(self, decay, C=1e3, lasso_nuclear_ratio=0.5, max_iter=50, tol=1e-5, n_threads=1, verbose=False, print_every=10, record_every=10, rho=.1, approx=0, em_max_iter=30, em_tol=None): LearnerHawkesNoParam.__init__( self, verbose=verbose, max_iter=max_iter, print_every=print_every, tol=tol, n_threads=n_threads, record_every=record_every) self.baseline = None self.adjacency = None self._C = 0 self._lasso_nuclear_ratio = 0 self.decay = decay self.rho = rho self._prox_l1 = ProxL1(1.) self._prox_nuclear = ProxNuclear(1.) self.C = C self.lasso_nuclear_ratio = lasso_nuclear_ratio self.verbose = verbose self.em_max_iter = em_max_iter self.em_tol = em_tol self._learner = _HawkesADM4(decay, rho, n_threads, approx) # TODO add approx to model self._model = ModelHawkesExpKernLogLik(self.decay, n_threads=self.n_threads) self.history.print_order += ["rel_baseline", "rel_adjacency"]
def __init__(self, kernel_support, n_basis=None, kernel_size=10, tol=1e-5, C=1e-1, max_iter=100, verbose=False, print_every=10, record_every=10, n_threads=1, ode_max_iter=100, ode_tol=1e-5): LearnerHawkesNoParam.__init__(self, max_iter=max_iter, verbose=verbose, tol=tol, print_every=print_every, record_every=record_every, n_threads=n_threads) self.ode_max_iter = ode_max_iter self.ode_tol = ode_tol alpha = 1. / C if n_basis is None: n_basis = 0 self._learner = _HawkesBasisKernels(kernel_support, kernel_size, n_basis, alpha, n_threads) self._amplitudes_2d = None self.history.print_order = [ "n_iter", "rel_baseline", "rel_amplitudes", "rel_basis_kernels" ]