def plot_overlap_cumulative(df, size=100): fig, ax = plots.cumulative_distribution(df.w, df.ovrl, label='Within Company Overlap') fig, ax = plots.cumulative_distribution(df.w, df.e_ovrl, label='Full network', fig=fig, ax=ax) ax.set_xlabel(r'$P_{>}(w)$') ax.set_ylabel(r'$\langle O | P_{>}(w) \rangle$') ax.set_title( 'Overlap as a function of cumulative distribution of number of calls') ax.legend(loc=0) fig.savefig(run_path + 'overlap_cumulative_calls.png') return fig, ax
def plot_btrns_cumulative(df, size=100): idx = df.c_brtrn.notnull() fig, ax = plots.cumulative_distribution(df.c_brtrn[idx], df.ovrl[idx], size=100) fig, ax = plots.cumulative_distribution(df.c_wkn_t[idx], df.ovrl[idx], size=100, fig=fig, ax=ax) ax.set_xlabel(r'$P_>(\tau_r^{-1})$') ax.set_ylabel(r'$\langle O | P_>(\tau_r^{-1}) \rangle$') ax.set_title( 'Overlap as a function of cumulative \n inverse residual waiting time') ax.legend() fig.savefig(run_path + 'brtrn_cumulative.png') return fig, ax
def plot_iet_mean_cumulative(df): idx = df.c_iet_mu_na.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_mu_na[idx], df.ovrl[idx], label='Naive') idx = df.c_iet_mu_km.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_mu_km[idx], df.ovrl[idx], label='KM', fig=fig, ax=ax) ax.legend() ax.set_xlabel(r'$P_{>}(\tau)$') ax.set_ylabel(r'$\langle O | P_{>}(\tau) \rangle$') ax.set_title('Overlap as a function of cumulative mean inter-event time ') fig.savefig(run_path + 'mean_iet_cumulative.png') return fig, ax
def plot_iet_rfresh_cumulative(df, factor=1.1): idx = df.c_iet_rfsh_na.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_rfsh_na[idx], df.ovrl[idx]) ax.set_xlabel(r'$P_>(f)$') ax.set_ylabel(r'$\langle O | P_>(f) \rangle$') ax.set_title('Overlap as a function of cumulative \n relative freshness') fig.savefig(run_path + 'rfsh_iets_cumulative.png') return fig, ax
def plot_iet_sig_cumulative(df, factor=1.1): idx = df.c_iet_sig_na.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_sig_na[idx], df.ovrl[idx], label='Naive') idx = df.c_iet_sig_km.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_sig_km[idx], df.ovrl[idx], label='KM', fig=fig, ax=ax) ax.legend() ax.set_xlabel(r'$P_>(\sigma_{\tau})$') ax.set_ylabel(r'$\langle O | P_>(\sigma_{\tau}) \rangle$') ax.set_title( 'Overlap as a function of cumulative \n inter-event time standard deviation' ) fig.savefig(run_path + 'std_iets_cumulative.png') return fig, ax
def plot_iet_aget_cumulative(df, size=100): idx = df.c_iet_age_na.notnull() fig, ax = plots.cumulative_distribution(1 / df.c_iet_age_na[idx], df.ovrl[idx], size=100) ax.set_xlabel(r'$P_>(\tau_r^{-1})$') ax.set_ylabel(r'$\langle O | P_>(\tau_r^{-1}) \rangle$') ax.set_title( 'Overlap as a function of cumulative \n inverse residual waiting time') fig.savefig(run_path + 'age_iets_cumulative.png') return fig, ax
def plot_iet_bur_cumulative(df, size=20, arg='-'): idx = df.c_iet_bur_na.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_bur_na[idx], df.ovrl[idx], label='Naive', size=size, arg=arg) idx = df.c_iet_bur_km.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_bur_km[idx], df.ovrl[idx], label='KM', fig=fig, ax=ax, size=size, arg=arg) idx = df.c_iet_bur_c_na.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_bur_c_na[idx], df.ovrl[idx], label='C-Naive', fig=fig, ax=ax, size=size, arg=arg) idx = df.c_iet_bur_c_km.notnull() fig, ax = plots.cumulative_distribution(df.c_iet_bur_c_km[idx], df.ovrl[idx], label='C-KM', fig=fig, ax=ax, size=size, arg=arg) ax.legend() ax.set_xlabel(r'$P_{>}(B)$') ax.set_ylabel(r'$\langle O | P_{>}(B) \rangle$') ax.set_title('Overlap as a function of cumulative burstiness') fig.savefig(run_path + 'bur_iet_cumulative.png') return fig, ax