示例#1
0
def svd_power_method(arr, geo, angles, **kwargs):
    """
    method to determine the largest singular value for the rectangular A
    projection matrix.

    :param arr: (np.ndarray, dtype=np.float32)
        random vector
    :param geo: (tigre.geometry())
        geometry of the set up
    :param angles: (np.ndarray, dtype=np.float32)
        angles of projection
    :param kwargs:
        optional arguments
    :keyword maxiter: (int)
        number of iterations to run unless margin of error epsilon has
        been reached. Default: 100
    :keyword epsilon: (float)
        margin of error for the algorithm. Default: 0.001
    :keyword verbose: (bool)
        print stuff. Default: False

    :return: (float)
        the largest singular value of the A matrix.
    """
    maxiter = 100
    if "maxiter" in kwargs:
        maxiter = kwargs["maxiter"]
    # very optimistic value for epsilon (it turns out)
    epsilon = 0.001
    if "epsilon" in kwargs:
        epsilon = kwargs["epsilon"]
    verbose = False
    if "verbose" in kwargs:
        verbose = kwargs["verbose"]

    error = np.inf

    arr_old = arr.copy()
    i = 0
    while error >= epsilon:
        if verbose:
            if i == 0:
                print("using SVD power method to calculate " "Lipschitz const")
            if np.mod(i, 10) == 0:
                print("error for val is:" + str(error))
        # very verbose and inefficient for now
        omega = tigre.Ax(arr_old, geo, angles)
        alpha = np.linalg.norm(omega)
        u = (1.0 / alpha) * omega
        z = tigre.Atb(u, geo, angles)
        beta = np.linalg.norm(z)
        arr = (1.0 / beta) * z
        error = np.linalg.norm(tigre.Ax(arr, geo, angles) - beta * u)
        sigma = beta
        arr_old = arr
        i += 1
        if i >= maxiter:
            return sigma

    return sigma
示例#2
0
    def run_main_iter(self):
        self.l2l = np.zeros([self.niter], dtype=np.float32)
        avgtime = []
        for i in range(self.niter):
            if i == 0:
                print("CGLS Algorithm in progress.")
                toc = time.clock()
            if i == 1:
                tic = time.clock()
                print('Esitmated time until completetion (s): ' +
                      str((self.niter - 1) * (tic - toc)))
            avgtic = time.clock()
            q = tigre.Ax(self.__p__, self.geo, self.angles, 'ray-voxel')
            q_norm = np.linalg.norm(q)
            alpha = self.__gamma__ / (q_norm * q_norm)
            self.res += alpha * self.__p__
            avgtoc = time.clock()
            avgtime.append(abs(avgtic - avgtoc))
            for item in self.__dict__:
                if isinstance(getattr(self, item), np.ndarray):
                    if np.isnan(getattr(self, item)).any():
                        raise ValueError('nan found for ' + item +
                                         ' at iteraton ' + str(i))

            aux = self.proj - \
                tigre.Ax(self.res, self.geo, self.angles, 'ray-voxel')
            self.l2l[i] = np.linalg.norm(aux)
            if i > 0 and self.l2l[i] > self.l2l[i - 1]:
                print('re-initilization of CGLS called at iteration:' + str(i))
                if self.re_init_at_iteration + 1 == i:
                    print(
                        'Algorithm exited with two consecutive reinitializations.'
                    )
                    return self.res
                self.res -= alpha * self.__p__
                self.reinitialise_cgls()
                self.re_init_at_iteration = i

            self.__r__ -= alpha * q
            s = tigre.Atb(self.__r__, self.geo, self.angles)
            s_norm = np.linalg.norm(s)

            gamma1 = s_norm * s_norm
            beta = gamma1 / self.__gamma__
            if self.log_parameters:
                self.parameter_history['alpha'][i] = alpha
                self.parameter_history['beta'][i] = beta
                self.parameter_history['gamma'][i] = self.__gamma__
                self.parameter_history['q_norm'][i] = q_norm
                self.parameter_history['s_norm'][i] = s_norm

            self.__gamma__ = gamma1
            self.__p__ = s + beta * self.__p__

        print('Average time taken for each iteration for CGLS:' +
              str(sum(avgtime) / len(avgtime)) + '(s)')
示例#3
0
    def update_image(self, geo, angle, iteration):
        """
        VERBOSE:
         for j in range(angleblocks):
             angle = np.array([alpha[j]], dtype=np.float32)
             proj_err = proj[angle_index[j]] - Ax(res, geo, angle, 'Siddon')
             backprj = Atb(proj_err, geo, angle, 'FDK')
             res += backprj
             res[res<0]=0

        :return: None
        """
        self.res += (
            self.__bm__
            * 2
            * tigre.Atb(
                (
                    self.proj[self.angle_index[iteration]]
                    - tigre.Ax(self.res, geo, angle, "interpolated", gpuids=self.gpuids)
                ),
                geo,
                angle,
                "matched",
                gpuids=self.gpuids,
            )
        )
示例#4
0
    def ray_trace(self, phantom2, tile):

        if self.tigre_works:  # resort to astra if tigre doesn't work
            try:
                return np.squeeze(tigre.Ax(phantom2, self.geomet, self.angles))
            except Exception:
                logging.info("WARNING: Tigre GPU not working")

                self.tigre_works = False
示例#5
0
def setUp(**kwargs):
    if kwargs.get('mode') == 'cone':
        geo = tigre.geometry(mode='cone',
                             nVoxel=kwargs.get('nVoxel'),
                             default_geo=True)
        angles_1 = np.linspace(0, 2 * np.pi, 100, dtype=np.float32)
        angles_3 = np.zeros((100), dtype=np.float32)
        angles = np.vstack((angles_1, angles_3, angles_3)).T
        img = data_loader.load_head_phantom(number_of_voxels=geo.nVoxel)
        proj = tigre.Ax(img, geo, angles, kwargs.get('krylov'))
        if kwargs.get('alglist') == 'all':
            alglist = ['sart', 'sirt', 'ossart', 'asd_pocs', 'FDK', 'cgls']
        else:
            alglist = kwargs.pop('alglist').split()

        plot_algs(alglist,
                  proj,
                  geo,
                  angles,
                  niter=int(kwargs.pop('niter')),
                  **kwargs)

    if kwargs.get('mode') == 'parallel':
        geo = tigre.geometry(mode='parallel',
                             nVoxel=kwargs.get('nVoxel'),
                             default_geo=True)
        angles_1 = np.linspace(0, 2 * np.pi, 100, dtype=np.float32)
        angles_3 = np.zeros((100), dtype=np.float32)
        angles = np.vstack((angles_1, angles_3, angles_3)).T
        img = data_loader.load_head_phantom(number_of_voxels=geo.nVoxel)
        proj = tigre.Ax(img, geo, angles, kwargs.get('krylov'))
        if kwargs.get('alglist') == 'all':
            alglist = ['sart', 'sirt', 'ossart', 'asd_pocs', 'fbp', 'cgls']
        else:
            alglist = kwargs.pop('alglist').split()

        plot_algs(alglist,
                  proj,
                  geo,
                  angles,
                  niter=int(kwargs.pop('niter')),
                  **kwargs)
示例#6
0
def svd_power_method(arr, geo, angles, **kwargs):
    maxiter = 100
    if 'maxiter' in kwargs:
        maxiter = kwargs['maxiter']
    #very optimistic value for epsilon (it turns out)
    epsilon = 0.001
    if 'epsilon' in kwargs:
        epsilon = kwargs['epsilon']
    verbose = False
    if 'verbose' in kwargs:
        verbose = kwargs['verbose']

    error = np.inf

    arr_old = arr.copy()
    i = 0
    while error >= epsilon:
        if verbose:
            if i == 0:
                print('using SVD power method to calculate ' 'Lipschitz const')
            if np.mod(i, 10) == 0:
                print('error for val is:' + str(error))
        # very verbose and inefficient for now
        omega = tigre.Ax(arr_old, geo, angles)
        alpha = np.linalg.norm(omega)
        u = (1. / alpha) * omega
        z = tigre.Atb(u, geo, angles)
        beta = np.linalg.norm(z)
        arr = (1. / beta) * z
        error = np.linalg.norm(tigre.Ax(arr, geo, angles) - beta * u)
        sigma = beta
        arr_old = arr
        i += 1
        if i >= maxiter:
            return sigma

    return sigma


# http://www.anstuocmath.ro/mathematics/anale2015vol2/Bentbib_A.H.__Kanber_A..pdf
示例#7
0
 def test(self):
     head = load_head_phantom(self.geo.nVoxel)
     proj = tigre.Ax(head, self.geo, self.angles)
     if self.algorithm in ["FDK", "fbp"]:
         self.output = getattr(tigre.algorithms, self.algorithm)(proj, self.geo, self.angles)
         self.rmse = Measure_Quality(self.output, head, ["nRMSE"])
         self.algorithm_finished = True
         return
     self.timestarted = time.asctime()
     self.output = getattr(tigre.algorithms, self.algorithm)(
         proj, self.geo, self.angles, self.niter, **self.kwargs
     )
     self.timeended = time.asctime()
     self.algorithm_finished = True
     self.rmse = Measure_Quality(self.output, head, ["nRMSE"])
示例#8
0
    def test(self):
        if self.algorithm == 'fbp' and self.geo.mode != 'parallel':
            print('WARNING: fbp was implemented in cone beam.')
            print('Test ignored.\n')
            raise SystemExit()

        head = load_head_phantom(self.geo.nVoxel)
        proj = tigre.Ax(head, self.geo, self.angles)
        if self.algorithm in ['FDK', 'fbp']:
            self.output = getattr(tigre.algorithms,
                                  self.algorithm)(proj, self.geo, self.angles)
            self.rmse = Measure_Quality(self.output, head, ['nRMSE'])
            self.algorithm_finished = True
            return
        self.timestarted = time.asctime()
        self.output = getattr(tigre.algorithms,
                              self.algorithm)(proj, self.geo, self.angles,
                                              self.niter, **self.kwargs)
        self.timeended = time.asctime()
        self.algorithm_finished = True
        self.rmse = Measure_Quality(self.output, head, ['nRMSE'])
示例#9
0
import time
import sys
from tigre.demos.Test_data import data_loader
from matplotlib import pyplot as plt
from tigre.utilities.Measure_Quality import Measure_Quality
#geo1 = tigre.geometry(mode='cone', high_quality=False, default=True)
geo = tigre.geometry(mode='cone', nVoxel=np.array([256,256,256]),default=True)
geo.dDetector = np.array([0.8, 0.8])*2               # size of each pixel            (mm)
geo.sDetector = geo.dDetector * geo.nDetector

niter = 10
nangles = 100
angles = np.linspace(0, 2 * np.pi, nangles, dtype=np.float32)
#head = np.load('src_img_cubic_256.npy') #data_loader.load_head_phantom(geo.nVoxel)
head = data_loader.load_head_phantom(geo.nVoxel)
proj = tigre.Ax(head,geo,angles)
fdkout = algs.fdk(proj,geo,angles)
sirtout = algs.ossart(proj,geo,angles,20,blocksize=20)
# 'RMSE'
# 'MSSIM'
# 'SSD'
# 'UQI'
print('RMSE fdk:')
print(Measure_Quality(fdkout,head,['nRMSE']))

print('RMSE ossart')
print(Measure_Quality(sirtout,head,['nRMSE']))
plt.subplot(211)
plt.imshow(fdkout[geo.nVoxel[0]//2])
plt.subplot(212)
plt.imshow(sirtout[geo.nVoxel[0]//2])
示例#10
0
geo.accuracy = 0.5
# Accuracy of FWD proj          (vx/sample)

# lets do just one angles

angles = np.array([0])
#%% Description
# The difference between them is that `Siddon` will compute the
# intersection of a ray crossing each voxel, and the `interpolated` will
# sample the voxels at a given sample rate.

#%% Main difference

head = sample_loader.load_head_phantom(geo.nVoxel)
start_time = time.time()
projInterp = tigre.Ax(head, geo, angles, "interpolated")
interptime = time.time() - start_time

start_time = time.time()
projray = tigre.Ax(head, geo, angles, "Siddon")
raytime = time.time() - start_time
# It is relatively clear that discretization artefacts appear with the
# ray-voxel approach (middle one)
tigre.plotproj(
    np.concatenate([np.abs(projInterp - projray), projray, projInterp],
                   axis=1), angles)
# But also the ray voxel approach is faster (more obvious at bigger sizes)
print("Time interpolated: " + str(interptime))
print("Time Siddon      : " + str(raytime))

#%% With small voxel the errors are more obvious
示例#11
0
    def run_main_iter(self):
        self.l2l = np.zeros([self.niter], dtype=np.float32)
        avgtime = []
        for i in range(self.niter):
            if i == 0:
                if self.verbose:
                    print("CGLS Algorithm in progress.")
                toc = default_timer()
            if i == 1:
                tic = default_timer()
                if self.verbose:
                    print("Esitmated time until completetion (s): " +
                          str((self.niter - 1) * (tic - toc)))
            avgtic = default_timer()
            q = tigre.Ax(self.__p__,
                         self.geo,
                         self.angles,
                         "Siddon",
                         gpuids=self.gpuids)
            q_norm = np.linalg.norm(q)
            alpha = self.__gamma__ / (q_norm * q_norm)
            self.res += alpha * self.__p__
            avgtoc = default_timer()
            avgtime.append(abs(avgtic - avgtoc))
            for item in self.__dict__:
                if isinstance(getattr(self, item), np.ndarray):
                    if np.isnan(getattr(self, item)).any():
                        raise ValueError("nan found for " + item +
                                         " at iteraton " + str(i))

            aux = self.proj - tigre.Ax(
                self.res, self.geo, self.angles, "Siddon", gpuids=self.gpuids)
            self.l2l[i] = np.linalg.norm(aux)
            if i > 0 and self.l2l[i] > self.l2l[i - 1]:
                if self.verbose:
                    print("re-initilization of CGLS called at iteration:" +
                          str(i))
                if self.re_init_at_iteration + 1 == i:
                    if self.verbose:
                        print(
                            "Algorithm exited with two consecutive reinitializations."
                        )
                    return self.res
                self.res -= alpha * self.__p__
                self.reinitialise_cgls()
                self.re_init_at_iteration = i

            self.__r__ -= alpha * q
            s = tigre.Atb(self.__r__,
                          self.geo,
                          self.angles,
                          gpuids=self.gpuids)
            s_norm = np.linalg.norm(s)

            gamma1 = s_norm * s_norm
            beta = gamma1 / self.__gamma__
            if self.log_parameters:
                self.parameter_history["alpha"][i] = alpha
                self.parameter_history["beta"][i] = beta
                self.parameter_history["gamma"][i] = self.__gamma__
                self.parameter_history["q_norm"][i] = q_norm
                self.parameter_history["s_norm"][i] = s_norm

            self.__gamma__ = gamma1
            self.__p__ = s + beta * self.__p__
        if self.verbose:
            print("Average time taken for each iteration for CGLS:" +
                  str(sum(avgtime) / len(avgtime)) + "(s)")
示例#12
0
import numpy as np
from tigre.utilities import sample_loader
from tigre.utilities import CTnoise
import tigre.algorithms as algs
from matplotlib import pyplot as plt

#%% Geometry
geo = tigre.geometry_default(high_resolution=False)

#%% Load data and generate projections
# define angles
angles = np.linspace(0, 2 * np.pi, 100)
# Load thorax phatom data
head = sample_loader.load_head_phantom(geo.nVoxel)
# generate projections
projections = tigre.Ax(head, geo, angles)
# add noise
noise_projections = CTnoise.add(projections,
                                Poisson=1e5,
                                Gaussian=np.array([0, 10]))

## FISTA is a quadratically converging algorithm.

# 'hyper': This parameter should approximate the largest
#          eigenvalue in the A matrix in the equation Ax-b and Atb.
#          Empirical tests show that for, the headphantom object:
#
#               geo.nVoxel = [64,64,64]'    ,      hyper (approx=) 2.e8
#               geo.nVoxel = [512,512,512]' ,      hyper (approx=) 2.e4
#          Default: 2.e8
# 'tviter':  Number of iterations of Im3ddenoise to use. Default: 20
示例#13
0
class TestStdout(unittest.TestCase):
    pass


def test_generator(algorithm, proj, geo, angles, niter):
    def test(self):
        capturedOutput = StringIO.StringIO()
        sys.stdout = capturedOutput
        getattr(algs, algorithm)(proj, geo, angles, niter=niter, verbose=False)
        self.assertIs(capturedOutput.getvalue(), "")
        sys.stdout = sys.__stdout__

    return test


if __name__ == "__main__":
    geo = tigre.geometry(mode="cone", default=True, high_quality=False)
    print(geo)

    true_img = data_loader.load_head_phantom(geo.nVoxel)
    angles = np.linspace(0, 2 * np.pi, 100)
    niter = 5
    proj = tigre.Ax(true_img, geo, angles)
    for alg in algs.__all__:
        if alg != "fbp":
            test_name = "test_print_%s" % (alg)
            test = test_generator(alg, proj, geo, angles, niter)
            setattr(TestStdout, test_name, test)

    unittest.main()
示例#14
0
文件: example.py 项目: dyycy/TIGRE
# Geometry
#geo1 = tigre.geometry(mode='cone', high_quality=False, default=True)
geo = tigre.geometry(mode='cone',
                     nVoxel=np.array([256, 256, 256]),
                     default=True)
geo.dDetector = np.array([0.8, 0.8]) * 2  # size of each pixel            (mm)
geo.sDetector = geo.dDetector * geo.nDetector
# print(geo)

nangles = 100
angles = np.linspace(0, 2 * np.pi, nangles, endpoint=False, dtype=np.float32)

# Prepare projection data
#head = np.load('src_img_cubic_256.npy')
head = data_loader.load_head_phantom(geo.nVoxel)
proj = tigre.Ax(head, geo, angles, gpuids=gpuids)

# Reconstruct
niter = 20
fdkout = algs.fdk(proj, geo, angles, gpuids=gpuids)
sirtout = algs.ossart(proj, geo, angles, niter, blocksize=20, gpuids=gpuids)

# Measure Quality
# 'RMSE', 'MSSIM', 'SSD', 'UQI'
print('RMSE fdk:')
print(Measure_Quality(fdkout, head, ['nRMSE']))
print('RMSE ossart')
print(Measure_Quality(sirtout, head, ['nRMSE']))

# Plot
fig, axes = plt.subplots(3, 2)
示例#15
0
geo = tigre.geometry_default(high_resolution=False)

angles = np.linspace(0, 2 * np.pi, 100)
angles = np.hstack([angles, angles, angles])  # loop 3 times

# Load thorax phatom data
head = sample_loader.load_head_phantom(geo.nVoxel)

# This makes it helical
geo.offOrigin = np.zeros((angles.shape[0], 3))
geo.offOrigin[:, 2] = np.linspace(
    -1024 / 2 + 128, 1024 / 2 - 128,
    angles.shape[0])  # about 256^3 images fit int he detector with this size.

# project data
data = tigre.Ax(head, geo, angles)

# Uncomment if you want to see the data
# plotProj(data,angles);
## Reconstruct Helical

SIRTimg = algs.sirt(data, geo, angles, 30)
# SARTimg=SART(data,geo,angles,30); # takes time
CGLSimg = algs.cgls(data, geo, angles, 20)
## Plot results

# CGLS and SIRT
tigre.plotImg(np.concatenate([head, SIRTimg, CGLSimg], axis=1),
              dim="z",
              step=3,
              clims=[0, 1])
示例#16
0
import tigre
import tigre.algorithms as algs
import numpy as np

geo = tigre.geometry(mode='cone',
                     nVoxel=np.array([32, 64, 128]),
                     default_geo=True)
from tigre.demos.Test_data import data_loader

img = data_loader.load_head_phantom(geo.nVoxel)
angles = np.linspace(0, np.pi * 2, 100, dtype=np.float32)
proj = tigre.Ax(img, geo, angles)

algs.fdk(proj, geo, angles)
示例#17
0
# --------------------------- CGLS for both modes---------------------------------------
do_algs(['cgls'], proj_par, geo_par, angles, mode='Parallel', **dict(nVoxel = [64 ,64 ,64]))
do_algs(['cgls'], proj_con, geo_con, angles, mode='Cone', **dict(nVoxel = [64 ,64 ,64]))
"""

import tigre.algorithms as algs
nangles = 100
angles_1 = np.linspace(0, 2 * np.pi, nangles, dtype=np.float32)
angles_2 = np.ones(
    (nangles), dtype=np.float32) * np.array(np.pi / 4, dtype=np.float32)
angles_3 = np.zeros((nangles), dtype=np.float32)
angles = np.vstack((angles_1, angles_3, angles_3)).T
geo = tigre.geometry(mode='cone', nVoxel=nVoxel, default_geo=True)
source_img = data_loader.load_head_phantom(number_of_voxels=geo.nVoxel)
proj = tigre.Ax(source_img, geo, angles)
res = algs.awasd_pocs(proj, geo, angles, niter=10, **dict(blocksize=nangles))
from matplotlib import pyplot as plt
plt.imshow(res[32])
plt.show()
"""
from tigre.utilities.Atb import Atb
Atb(proj,geo,angles,'FDK')[32]
#plt.colorbar()
#plt.title('FDK')
mat = Atb(proj,geo,angles,'matched')
plt.subplot(221)
plt.imshow(mat[32])
plt.subplot(222)
plt.imshow(mat[:,32])
plt.subplot(223)
示例#18
0
from tigre.utilities import sample_loader
from tigre.utilities import CTnoise
import tigre.algorithms as algs
from matplotlib import pyplot as plt
from tigre.utilities.im3Dnorm import im3DNORM

#%% Geometry
geo = tigre.geometry_default(high_resolution=False)

#%% Load data and generate projections
# define angles
angles = np.linspace(0, 2 * np.pi, 100)
# Load thorax phatom data
head = sample_loader.load_head_phantom(geo.nVoxel)
# generate projections
projections = tigre.Ax(head, geo, angles)
# add noise
noise_projections = CTnoise.add(projections, Poisson=1e5, Gaussian=np.array([0, 10]))

#%% Lets create a OS-SART test for comparison
imgOSSART = algs.ossart(noise_projections, geo, angles, 10)

#%% Total Variation algorithms
#
#  ASD-POCS: Adaptative Steeppest Descent-Projection On Convex Subsets
# Often called POCS
# ==========================================================================
# ==========================================================================
#  ASD-POCS minimizes At-B and the TV norm separately in each iteration,
#  i.e. reconstructs the image first and then reduces the TV norm, every
#  iteration. As the other algorithms the mandatory inputs are projections,
示例#19
0
def testandlog(alglist,
               geo,
               angles,
               niter,
               saveresult=False,
               newsubdirectory=False,
               **kwargs):
    nangles = angles.shape[0]
    # createlogfile

    dirname = os.path.dirname(__file__)
    kwargs.update(dict(blocksize=20))
    # create top level folder if this does not exist

    if 'logs' not in os.listdir(dirname):
        os.system('mkdir ' + 'logs')
    logdirectory = os.path.join(dirname, 'logs')
    logdate = time.strftime("%a_%b_%d")
    if logdate not in os.listdir(logdirectory):
        os.system('mkdir ' + os.path.join(logdirectory, logdate))
    subdirectory = os.path.join(logdirectory, logdate)
    if 'subdirectoryname' in kwargs:
        subdirectoryname = kwargs['subdirectoryname']
    else:
        subdirectoryname = 'test' + str(len(os.listdir(subdirectory)) - 1)

    if newsubdirectory:
        subdirectoryname = 'test' + str(len(os.listdir(subdirectory)))

    # create subdirectory for test if this does not exist

    if subdirectoryname not in os.listdir(subdirectory):
        os.system('mkdir ' + os.path.join(subdirectory, subdirectoryname))
    subdirectory = os.path.join(logdirectory, logdate, subdirectoryname)
    timestamp = str(time.asctime()).replace(' ', '_')

    # create/append to log file

    logfilename = None
    for filename in os.listdir(subdirectory):
        if os.path.splitext(filename)[-1] == '.log':
            logfilename = os.path.split(filename)[-1]
    logflist = []
    if logfilename is not None:
        logflist.extend(
            open(os.path.join(subdirectory, logfilename), 'r').readlines())
    else:
        logfilename = timestamp + '.log'
    try:
        algsuccess = np.load(
            os.path.join(subdirectory,
                         os.path.splitext(logfilename)[0]) + '.npy').item()
    except Exception:
        algsuccess = dict()
    # TODO: need to fix directory path here.
    repo_path = os.path.join(dirname, '..', '..', '.git/')
    repo = Repo(repo_path)
    commit = list(repo.iter_commits(repo.active_branch))[0]
    uname = str(os.uname())
    current_config = dict(uname=uname, commithash=commit.hexsha)
    try:
        prev_config = open(
            os.path.join(subdirectory,
                         os.path.splitext(logfilename)[0] + '_config') +
            '.npy').item()
    except Exception:
        prev_config = dict()
        prev_config.update(current_config)

    for item in current_config:
        if prev_config[item] != current_config[item]:
            logflist.append(
                '------------------------------------------------\n')
            logflist.append('Configuration changed for' + item + ':\n')
            logflist.append('From: ' + str(prev_config[item]))
            logflist.append('To  : ' + str(current_config[item]))

    if len(logflist) == 0:  # If file is empty
        # MACHINE

        logflist.append(uname + '\n')

        # GIT header for logfile

        if not repo.bare:
            logflist.append(
                '------------------------------------------------\n')
            logflist.append(make_repository_str(repo))

            # create list of commits then print some of them to stdout

            logflist.append(make_commit_str(commit))
            logflist.append(
                '\n------------------------------------------------\n')
        else:
            print('Could not load repository at {} :('.format(repo_path))

        logflist.append('GEOMETRY used for instance of testandlog: \n')
        for item in geo.__dict__:
            logflist.append(item + ': ' + str(getattr(geo, item)) + '\n')
        logflist.append('------------------------------------------------\n')

    # Run the algorithms

    source_img = data_loader.load_head_phantom(number_of_voxels=geo.nVoxel)
    proj = tigre.Ax(source_img, geo, angles)

    for alg in alglist:
        logflist.append(str(alg).upper() + ' ' + time.asctime() + '\n')
        logflist.append('nproj: ' + str(nangles) + ' niter: ' + str(niter) +
                        '\n')
        if np.sum(angles[:, 1]) != 0 or np.sum(angles[:, 2]) != 0:
            spherical = True
        else:
            spherical = False
        logflist.append('spherical projection: ' + str(spherical) + '\n')
        algpassed = False
        try:
            tic = time.clock()
            res = getattr(algs, alg)(proj, geo, angles, niter=niter, **kwargs)
            algpassed = True
        except Exception:
            formatedlines = traceback.format_exc()
            logflist.append('ERROR at ' +
                            str(time.strftime("%H:%M:%S") + '\n'))
            logflist.append(''.join(formatedlines) + '\n')
        finally:
            toc = time.clock()
            algsuccess.update({alg: algpassed})
            np.save(
                os.path.join(subdirectory,
                             os.path.splitext(logfilename)[0]), algsuccess)
            np.save(
                os.path.join(subdirectory,
                             os.path.splitext(logfilename)[0]) + '_config',
                current_config)
            pass
        if algpassed:
            logflist.append('total time taken: ' + str(abs(tic - toc)) + '\n')
        logflist.append('------------------------------------------------\n')
        logf = open(os.path.join(subdirectory, logfilename), 'w')
        logf.write(''.join(logflist))
        logf.close()
        if saveresult and algpassed:
            warnings.filterwarnings("ignore")
            plt.figure()
            plt.subplot(3, 1, 1)
            plt.imshow(res[geo.nVoxel[0] / 2])
            plt.title('results for ' + alg)
            plt.ylabel('dim 0')

            plt.subplot(3, 1, 2)
            plt.imshow(res[:, geo.nVoxel[1] / 2])
            plt.ylabel('dim 1')

            plt.subplot(3, 1, 3)
            plt.imshow(res[:, :, geo.nVoxel[2] / 2])
            plt.ylabel('dim 2')
            plt.savefig(
                os.path.join(subdirectory,
                             alg + '_' + geo.mode + '_' + timestamp + '.png'))
            warnings.filterwarnings("error")
示例#20
0
    def run_main_iter(self):
        self.l2l = np.zeros((1, self.niter), dtype=np.float32)
        avgtime = []
        for i in range(self.niter):
            if self.verbose:
                self._estimate_time_until_completion(i)
            if self.Quameasopts is not None:
                res_prev = copy.deepcopy(self.res)

            avgtic = default_timer()
            q = tigre.Ax(self.__p__,
                         self.geo,
                         self.angles,
                         "Siddon",
                         gpuids=self.gpuids)
            q_norm = np.linalg.norm(q)
            alpha = self.__gamma__ / (q_norm * q_norm)
            self.res += alpha * self.__p__
            avgtoc = default_timer()
            avgtime.append(abs(avgtic - avgtoc))
            for item in self.__dict__:
                if (isinstance(getattr(self, item), np.ndarray)
                        and np.isnan(getattr(self, item)).any()):
                    raise ValueError("nan found for " + item +
                                     " at iteraton " + str(i))

            aux = self.proj - tigre.Ax(
                self.res, self.geo, self.angles, "Siddon", gpuids=self.gpuids)
            self.l2l[0, i] = np.linalg.norm(aux)
            if i > 0 and self.l2l[0, i] > self.l2l[0, i - 1]:
                if self.verbose:
                    print("re-initilization of CGLS called at iteration:" +
                          str(i))
                if self.re_init_at_iteration + 1 == i:
                    if self.verbose:
                        print(
                            "Algorithm exited with two consecutive reinitializations."
                        )
                    return self.res
                self.res -= alpha * self.__p__
                self.reinitialise_cgls()
                self.re_init_at_iteration = i

            self.__r__ -= alpha * q
            s = tigre.Atb(self.__r__,
                          self.geo,
                          self.angles,
                          backprojection_type="matched",
                          gpuids=self.gpuids)
            s_norm = np.linalg.norm(s)

            gamma1 = s_norm * s_norm
            beta = gamma1 / self.__gamma__
            if self.log_parameters:
                self.parameter_history["alpha"][i] = alpha
                self.parameter_history["beta"][i] = beta
                self.parameter_history["gamma"][i] = self.__gamma__
                self.parameter_history["q_norm"][i] = q_norm
                self.parameter_history["s_norm"][i] = s_norm

            self.__gamma__ = gamma1
            self.__p__ = s + beta * self.__p__
            if self.Quameasopts is not None:
                self.error_measurement(res_prev, i)

        if self.verbose:
            print("Average time taken for each iteration for CGLS:" +
                  str(sum(avgtime) / len(avgtime)) + "(s)")