示例#1
0
    def saveParameters(self):
        """
        Saves the parameters as tiktorch Object
        """
        self.code_path = str(self.code_path_textbox.text())
        self.model_class_name = str(self.model_class_name_textbox.text())
        self.state_path = str(self.state_path_textbox.text())
        self.input_shape = [
            int(x) for x in self.input_shape_textbox.text()[1:-1].replace(
                ", ", ",").split(",")
        ]
        self.minimal_increment = [
            int(x)
            for x in self.minimal_increment_textbox.text()[1:-1].replace(
                ", ", ",").split(",")
        ]
        self.model_init_kwargs = yaml.load(
            str(self.model_init_kwargs_textbox.text())[1:-1].replace(
                ", ", "\n"))
        self.model_path = str(self.model_path_textbox.text())

        spec = TikTorchSpec(
            code_path=self.code_path,
            model_class_name=self.model_class_name,
            state_path=self.state_path,
            input_shape=self.input_shape,
            minimal_increment=self.minimal_increment,
            model_init_kwargs=self.model_init_kwargs,
        )

        buildface = BuildSpec(self.model_path)
        buildface.build(spec)
示例#2
0
 def test_BuildUNet2d(self):
     spec = TikTorchSpec(code_path='/home/jo/sfb1129/pretrained_net_constantin/ISBI2012_UNet_pretrained/model.py',
                         model_class_name='UNet2dGN',
                         state_path='/home/jo/sfb1129/pretrained_net_constantin/ISBI2012_UNet_pretrained/state.nn',
                         input_shape=(1, 572, 572),
                         minimal_increment=[32, 32],
                         model_init_kwargs={'in_channels': 1, 'out_channels': 1, 'initial_features': 64})
     self.spec.validate()
     build_spec = BuildSpec(build_directory='/home/jo/ISBI_UNet_pretrained', device='cpu')
     build_spec.build(self.spec)
示例#3
0
 def test_BuilDUNet3d(self):
     spec = TikTorchSpec(code_path='/home/jo/uni/master-models/master_models/models/dunet3D.py',
                         model_class_name='DUNet3D',
                         state_path='/home/jo/uni/master-models/master_models/results/dunet3D/trained_net/best_model_dunet3D.torch',
                         input_shape=[1, 512, 512],
                         minimal_increment=[32, 32],
                         model_init_kwargs={'in_channels': 1, 'out_channels': 1})
     self.spec.validate()
     build_spec = BuildSpec(build_directory='/home/jo/CREMI_DUNet_pretrained', device='cpu')
     build_spec.build(self.spec)
示例#4
0
 def test_BuildDUNet2d(self):
     spec = TikTorchSpec(code_path='/home/jo/config/model.py',
                         model_class_name='DUNet2D',
                         state_path='/home/jo/config/state.nn',
                         input_shape=[1, 512, 512],
                         minimal_increment=[32, 32],
                         model_init_kwargs={'in_channels': 1, 'out_channels': 1})
     self.spec.validate()
     build_spec = BuildSpec(build_directory='/home/jo/CREMI_DUNet_pretrained', device='cpu')
     build_spec.build(self.spec)
示例#5
0
 def test_BuildDUNet2d(self):
     spec = TikTorchSpec(
         code_path="/home/jo/config/model.py",
         model_class_name="DUNet2D",
         state_path="/home/jo/config/state.nn",
         input_shape=[1, 512, 512],
         minimal_increment=[32, 32],
         model_init_kwargs={
             "in_channels": 1,
             "out_channels": 1
         },
     )
     self.spec.validate()
     build_spec = BuildSpec(
         build_directory="/home/jo/CREMI_DUNet_pretrained", device="cpu")
     build_spec.build(self.spec)
示例#6
0
 def test_BuilDUNet3d(self):
     spec = TikTorchSpec(
         code_path=
         "/home/jo/uni/master-models/master_models/models/dunet3D.py",
         model_class_name="DUNet3D",
         state_path=
         "/home/jo/uni/master-models/master_models/results/dunet3D/trained_net/best_model_dunet3D.torch",
         input_shape=[1, 512, 512],
         minimal_increment=[32, 32],
         model_init_kwargs={
             "in_channels": 1,
             "out_channels": 1
         },
     )
     self.spec.validate()
     build_spec = BuildSpec(
         build_directory="/home/jo/CREMI_DUNet_pretrained", device="cpu")
     build_spec.build(self.spec)
示例#7
0
 def test_BuildUNet2d(self):
     spec = TikTorchSpec(
         code_path=
         "/home/jo/sfb1129/pretrained_net_constantin/ISBI2012_UNet_pretrained/model.py",
         model_class_name="UNet2dGN",
         state_path=
         "/home/jo/sfb1129/pretrained_net_constantin/ISBI2012_UNet_pretrained/state.nn",
         input_shape=(1, 572, 572),
         minimal_increment=[32, 32],
         model_init_kwargs={
             "in_channels": 1,
             "out_channels": 1,
             "initial_features": 64
         },
     )
     self.spec.validate()
     build_spec = BuildSpec(build_directory="/home/jo/ISBI_UNet_pretrained",
                            device="cpu")
     build_spec.build(self.spec)