def run(conn: Connection, config: dict, model: torch.nn.Module, log_queue: Optional[mp.Queue] = None): log.configure(log_queue) inference_proc = InferenceProcess(config, model) srv = MPServer(inference_proc, conn) srv.listen()
def run(conn: Connection, config: dict, model: torch.nn.Module, log_queue: Optional[mp.Queue] = None): log.configure(log_queue) # print('CUDA_VISIBLE_DEVICES:', os.environ["CUDA_VISIBLE_DEVICES"]) dryrun_proc = DryRunProcess(config, model) srv = MPServer(dryrun_proc, conn) srv.listen()
def run( conn: Connection, config: dict, model: torch.nn.Module, optimizer_state: bytes = b"", log_queue: Optional[mp.Queue] = None, ): log.configure(log_queue) training_proc = TrainingProcess(config, model, optimizer_state) srv = MPServer(training_proc, conn) srv.listen()
def run( conn: Connection, config: dict, model_file: bytes, model_state: bytes, optimizer_state: bytes, log_queue: Optional[mp.Queue] = None, ): log.configure(log_queue) handler = HandlerProcess(config, model_file, model_state, optimizer_state, log_queue) srv = MPServer(handler, conn) srv.listen()
def _run_model_session_process( conn: Connection, model_zip: bytes, devices: List[str], log_queue: Optional[_mp.Queue] = None ): try: # from: https://github.com/pytorch/pytorch/issues/973#issuecomment-346405667 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) except ModuleNotFoundError: pass # probably running on windows if log_queue: log.configure(log_queue) session_proc = ModelSessionProcess(model_zip, devices) srv = MPServer(session_proc, conn) srv.listen()
def _srv(conn, log_queue): log.configure(log_queue) srv = MPServer(ApiImpl(), conn) srv.listen()
def _run_srv(srv_cls, conn, log_queue): log.configure(log_queue) srv = MPServer(srv_cls(), conn) srv.listen()
def _cancel_srv(conn, log_queue): log.configure(log_queue) srv = MPServer(CancelableSrv(), conn) srv.listen()