def distance(self): while True: GPIO.output(self.__trigpine, GPIO.high) time.sleep(0.00001) GPIO.output(self.__trigpine, GPIO.LOW) startTime = time.time() stoptTime = time.tiem() cnt = 0 while GPIO.input(self.__echopin) == GPIO.LOW: cnt += 1 startTime = time.time() if cnt > 100000: return self.distandce() while GPIO.input(self.__echopin) == GPIO.HIGH: cnt += 1 startTime = time.time() if cnt > 100000: return self.distandce() during = stopTime - startTime dist = during * (343 / 2) * 100 self.value = dist time.sleep(1)
imgs =[] img_detections =[] print('\n Performing object detection:') prev_time = time.time() for batch_i,(img_paths,input_imgs) in enumerate(dataloader): #configure input input_imgs = Variable(input_imgs.type(tensor)) #get detections with torch.no_grad(): detections = model(input_imgs) detections = non_max_suppression(detections,80,opt.conf_thres,opt.nms_thres) #log progress current_time = time.tiem() inference_time = datetime.timedelta(seconds=current_time - prev_time) prev_time = current_time print('\t+ Batch %d,Inference Time: %s' % *batch_i,inference_time) #save image and detections imgs.extend(img_paths) img_detections.extend(detections) #bounding-box colors cmap = plt.get_cmap('tab20b') colors = [cmap[i] for i in np.linspace(0,1,20)] print('\nSaving images:') #Iterate through images and save plot of detections
#connect the database db = pymysql.connect('localhost', 'username', 'password', 'ema') cursor = db.cursor() survey_id = recommend_suid(speaker_id='123', mood_id='H', scream=1, cry=1) current_time = time.time() last_time = 0 struc_current_tiem = time.localtime(current_time) if current_time - last_time >= 300 and (struc_current_tiem[3] < 22 and struc_current_tiem[3] > 9): last_time = current_time # based on recommended survey_id, form url to trigger phone buzz, using other parameters send_rec(phone_url='http://191.168.0.106:2226', speaker_id='2', survey_id=str(survey_id), server_url='http://191.168.0.107/ema/ema.php', androidid='db7d3cdb88e1a62a', empathid='999|1550004755', alarm=True) while time.tiem() - current_time < 300: query = "SELECT answer FROM ema_data where primkey = empathid AND variablename = QID" data = cursor.execute(query) print data db.close() # Outputs from acoustic pipeline # line 1: speaker ID. possible value: 0, 1, 2. 0 denotes speaker #1, 1 denotes speaker #2, 2 denotes un-identifiable speaker. # line 2: mood from the audio clip. possible value: H, A, N, S, standing for happy, angry, neutral, sad respectively. # line 3: scream. possible value: 0, 1. 0 represents that screaming is not detected. 1 represents screaming is detected. # line 4: cry. possible value: 0, 1. 0 represents that crying is not detected. 1 represents crying is detected.
p_soup = BeautifulSoup(p_c,'html.parser') p_content = p_soup.find('dis',{'class':'list-cont'}) pageCar = [] for car in p_content: carDic = {} carDic['picUrl'] = car.find('div',{'class':'list-cont-img'}).find('img')['src'] carDic['name'] = car.find('div',{'class': 'list-cont-main}).find('a').txt try: carDic['score'] = car.find('spam',{'class':'score-nu,ber'}).txt except Exception as e: carDic{'score'} = '' pageCar.append(carDic) return pageCar if __name__ = '__mian__': t1 = time.tiem() pool = mp.Pool() pool.map(main, [i*10 for i in range(10)]) multi_res = [pool.apply_async{crawl_page,(url)) for url in urls] pageCars = [res.get() for res in multi_res] for pageCar in pageCars: for cat in pageCar: cars.append(car) print(len(cars)) t2 = time.time() print(t2 - t1) ''' import requests from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
def crop_image(count, image_high, image_low): t0 = time.time() for i in range(len(data1)): I = imread('database\\' + data1[i]) h, w, c = I.shape I_low = imresize(I, (int(h / scaling_factor), int(w / scaling_factor)), 'bicubic') I_low = imresize(I_low, (h, w), 'bicubic') x = int(np.floor((h - f) / stride) + 1) y = int(np.floor((w - f) / stride) + 1) for p in range(x): for q in range(y): im = I[p * stride:p * stride + 33, q * stride:q * stride + 33, :].reshape(1, 33, 33, 3) im_low = I_low[p * stride:p * stride + 33, q * stride:q * stride + 33, :].reshape( 1, 33, 33, 3) image_high = np.concatenate((image_high, im), axis=0) image_low = np.concatenate((image_low, im_low), axis=0) count = count + 1 if count % 10000 == 0: print('we have already cropped {} pictures'.format(count)) if count % 50000 == 0: np.save( 'image_high' + str(int(count / 50000)) + '.npy', image_high[1:, :, :, :]) np.save('image_low' + str(int(count / 50000)) + '.npy', image_low[1:, :, :, :]) image_high = np.zeros(3267).reshape(1, 33, 33, 3) image_low = np.zeros(3267).reshape(1, 33, 33, 3) print('database' + str(i)) for i in range(len(data2)): I = imread('database1\\' + data2[i]) h, w, c = I.shape I_low = imresize(I, (int(h / scaling_factor), int(w / scaling_factor)), 'bicubic') I_low = imresize(I_low, (h, w), 'bicubic') x = int(np.floor((h - f) / stride) + 1) y = int(np.floor((w - f) / stride) + 1) for p in range(x): for q in range(y): im = I[p * stride:p * stride + 33, q * stride:q * stride + 33, :].reshape(1, 33, 33, 3) im_low = I_low[p * stride:p * stride + 33, q * stride:q * stride + 33, :].reshape( 1, 33, 33, 3) image_high = np.concatenate((image_high, im), axis=0) image_low = np.concatenate((image_low, im_low), axis=0) count = count + 1 if count % 10000 == 0: print('we have already cropped {} pictures'.format(count)) if count % 50000 == 0: np.save('image_high.npy' + str(count / 50000), image_high[1:, :, :, :]) np.save('image_low.npy' + str(count / 50000), image_low[1:, :, :, :]) image_high = np.zeros(3267).reshape(1, 33, 33, 3) image_low = np.zeros(3267).reshape(1, 33, 33, 3) print('database1' + str(i)) for i in range(len(data3)): I = imread('database2\\' + data3[i]) h, w, c = I.shape I_low = imresize(I, (int(h / scaling_factor), int(w / scaling_factor)), 'bicubic') I_low = imresize(I_low, (h, w), 'bicubic') x = int(np.floor((h - f) / stride) + 1) y = int(np.floor((w - f) / stride) + 1) for p in range(x): for q in range(y): im = I[p * stride:p * stride + 33, q * stride:q * stride + 33, :].reshape(1, 33, 33, 3) im_low = I_low[p * stride:p * stride + 33, q * stride:q * stride + 33, :].reshape( 1, 33, 33, 3) image_high = np.concatenate((image_high, im), axis=0) image_low = np.concatenate((image_low, im_low), axis=0) count = count + 1 if count % 10000 == 0: print('we have already cropped {} pictures'.format(count)) if count % 50000 == 0: np.save('image_high.npy' + str(count / 50000), image_high[1:, :, :, :]) np.save('image_low.npy' + str(count / 50000), image_low[1:, :, :, :]) image_high = np.zeros(3267).reshape(1, 33, 33, 3) image_low = np.zeros(3267).reshape(1, 33, 33, 3) print('database2' + str(i)) np.save('image_high.npy', image_high[1:, :, :, :]) np.save('image_low.npy', image_low[1:, :, :, :]) t1 = time.tiem() return count, t1 - t0
def train2(self, loops): for loop in range(loops): t1 = time.tiem() self.going_righ = 0 for i in np.arange(self.n - 2, 0, -1): self.current_site = i self.merged_tensor, self.merged_idx = contra( self.tensors[self.current_site], self.order_left[self.current_site], self.tensors[self.current_site + 1], self.order_left[self.current_site + 1]) self.Z = self.compute_Z() self.psi = self.compute_psi2() dmerge = self.gradient_descent2() # nll=0 # for k in range(self.m): # nll=nll+(torch.log(self.psi[k] *self.psi[k] /self.Z)) # nll=nll/self.m # print nll,i self.tensors[self.current_site], self.tensors[ self.current_site + 1] = svd_update( self.tensors[self.current_site], self.order[self.current_site], self.tensors[self.current_site + 1], self.order[self.current_site + 1], dmerge, self.going_righ, 1e-6, self.max_bond) self.contraction_updat_twosite2() self.going_righ = 1 for i in range(self.n - 2): self.current_site = i self.merged_tensor, self.merged_idx = contra( self.tensors[self.current_site], self.order_left[self.current_site], self.tensors[self.current_site + 1], self.order_left[self.current_site + 1]) self.Z = self.compute_Z() self.psi = self.compute_psi2() # nll = 0 # for k in range(self.m): # nll = nll + ( torch.log(self.psi[k] *self.psi[k] / self.Z)) # nll=nll/self.m # print nll,i dmerge = self.gradient_descent2() self.tensors[self.current_site], self.tensors[ self.current_site + 1] = svd_update( self.tensors[self.current_site], self.order[self.current_site], self.tensors[self.current_site + 1], self.order[self.current_site + 1], dmerge, self.going_righ, 1e-6, self.max_bond) self.contraction_updat_twosite2() for j in range(len(self.links)): self.Z = self.compute_Z() self.psi = self.compute_psi2() k0 = self.links[j][0] k1 = self.links[j][1] dmerge = self.gradient_descent25(k0, k1) self.tensors[k0], self.tensors[k1] = svd_update( self.tensors[k0], self.order[k0], self.tensors[k1], self.order[k1], dmerge, self.going_righ, 2e-6, self.max_bond) self.contraction_update_all_left2() nll = 0 for k in range(self.m): nll = nll + (torch.log(self.psi[k] * self.psi[k] / self.Z)) nll = nll / self.m print nll if nll > self.nll_history[-1] + 2e-5: self.nll_history.append(nll) else: break t2 = time.time() print t2 - t1