def generate_pt(temp): start_time = 0.0 end_time = 10.0 correlations = tempo.PowerLawSD(alpha=alpha, zeta=3, cutoff=omega_cutoff, cutoff_type='gaussian', temperature=temp) bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations) dt = 0.1 # 0.01 dkmax = 20 # 200 epsrel = 1.0e-6 # 1.0e-7 tempo_parameters = tempo.TempoParameters(dt=dt, dkmax=dkmax, epsrel=epsrel) pt_tempo_parameters = tempo.PtTempoParameters(dt=dt, dkmax=dkmax, epsrel=epsrel) pt = tempo.pt_tempo_compute(bath=bath, start_time=start_time, end_time=end_time, parameters=pt_tempo_parameters, progress_type='bar') pt.export("details_pt_tempo_{}K.processTensor".format(temp), overwrite=True)
def test_tensor_network_tempo_backend_non_diag(backend): Omega = 1.0 omega_cutoff = 5.0 alpha = 0.3 sx = tempo.operators.sigma("x") sy = tempo.operators.sigma("y") sz = tempo.operators.sigma("z") bases = [{"sys_op":sx, "coupling_op":sz, \ "init_state":tempo.operators.spin_dm("y+")}, {"sys_op":sy, "coupling_op":sx, \ "init_state":tempo.operators.spin_dm("z+")}, {"sys_op":sz, "coupling_op":sy, \ "init_state":tempo.operators.spin_dm("x+")}] results = [] for i, base in enumerate(bases): system = tempo.System(0.5 * base["sys_op"]) correlations = tempo.PowerLawSD(alpha=alpha, zeta=1, cutoff=omega_cutoff, cutoff_type='exponential', max_correlation_time=8.0) bath = tempo.Bath(0.5 * base["coupling_op"], correlations) tempo_parameters = tempo.TempoParameters(dt=0.1, dkmax=30, epsrel=10**(-5)) dynamics = tempo.tempo_compute(system=system, bath=bath, initial_state=base["init_state"], start_time=0.0, end_time=1.0, parameters=tempo_parameters, backend=backend) _, s_x = dynamics.expectations(0.5 * tempo.operators.sigma("x"), real=True) _, s_y = dynamics.expectations(0.5 * tempo.operators.sigma("y"), real=True) _, s_z = dynamics.expectations(0.5 * tempo.operators.sigma("z"), real=True) if i == 0: results.append(np.array([s_x, s_y, s_z])) elif i == 1: results.append(np.array([s_y, s_z, s_x])) elif i == 2: results.append(np.array([s_z, s_x, s_y])) assert np.allclose(results[0], results[1], atol=tempo_parameters.epsrel) assert np.allclose(results[0], results[2], atol=tempo_parameters.epsrel)
def test_tempo_dynamics_reference(): system = tempo.System(0.5 * tempo.operators.sigma("x")) correlations = tempo.PowerLawSD(alpha=0.1, zeta=1, cutoff=1.0, cutoff_type='exponential', max_correlation_time=0.5) bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations) tempo_parameters = tempo.TempoParameters(dt=0.1, dkmax=10, epsrel=10**(-4)) tempo_A = tempo.Tempo(system=system, bath=bath, parameters=tempo_parameters, initial_state=tempo.operators.spin_dm("up"), start_time=0.0) dynamics_1 = tempo_A.compute(end_time=0.2) t_1, sz_1 = dynamics_1.expectations(tempo.operators.sigma("z")) tempo_A.compute(end_time=0.4) dynamics_2 = tempo_A.get_dynamics() t_2, sz_2 = dynamics_2.expectations(tempo.operators.sigma("z")) assert dynamics_1 == dynamics_2 assert len(t_2) > len(t_1)
plt.legend() # ### B.3: Create time dependent system object # In[6]: def hamiltonian_t(t): return detuning(t) / 2.0 * tempo.operators.sigma("z") + gaussian_shape( t, area=np.pi / 2.0, tau=0.245) / 2.0 * tempo.operators.sigma("x") system = tempo.TimeDependentSystem(hamiltonian_t) correlations = tempo.PowerLawSD(alpha=alpha, zeta=3, cutoff=omega_cutoff, cutoff_type='gaussian', max_correlation_time=5.0, temperature=temperature) bath = tempo.Bath(tempo.operators.sigma("z") / 2.0, correlations) # ### B.4: TEMPO computation # With all physical objects defined, we are now ready to compute the dynamics of the quantum dot using TEMPO (using quite rough convergence parameters): # In[7]: tempo_parameters = tempo.TempoParameters(dt=0.05, dkmax=40, epsrel=10**(-5)) tempo_sys = tempo.Tempo(system=system, bath=bath, initial_state=initial_state,
# exact result: def exact_result(t): x = (t*cutoff_E)**2 phi = 2 * alpha_E * (1 + (x-1)/(x+1)**2) y_plus = np.exp(-phi) dm = (1 - y_plus) * tempo.operators.spin_dm("mixed") \ + y_plus * tempo.operators.spin_dm("y+") return dm rho_E = exact_result(t_end_E) correlations_E = tempo.PowerLawSD(alpha=alpha_E, zeta=3.0, cutoff=cutoff_E, cutoff_type="exponential", temperature=temperature_E, name="superohmic", ) bath_E = tempo.Bath(coupling_operator_E, correlations_E, name="superohmic phonon bath") system_E = tempo.System(h_sys_E) # ----------------------------------------------------------------------------- @pytest.mark.parametrize('backend,backend_config', [("tensor-network", {"backend":"numpy"}),]) def test_tensor_network_tempo_backend_E(backend, backend_config): tempo_params_E = tempo.TempoParameters(dt=0.4, dkmax=5,
""" import pytest import time_evolving_mpo as tempo TEMP_FILE = "tests/data/temp.processTensor" # -- prepare a process tensor ------------------------------------------------- system = tempo.System(tempo.operators.sigma("x")) initial_state = tempo.operators.spin_dm("z+") correlations = tempo.PowerLawSD(alpha=0.3, zeta=1.0, cutoff=5.0, cutoff_type="exponential", temperature=0.2, name="ohmic") bath = tempo.Bath(0.5*tempo.operators.sigma("z"), correlations, name="phonon bath") tempo_params = tempo.PtTempoParameters(dt=0.1, dkmax=5, epsrel=10**(-5)) pt = tempo.pt_tempo_compute(bath, start_time=0.0, end_time=1.0, parameters=tempo_params) pt.export(TEMP_FILE, overwrite=True) del pt
# ------------------------------------------------- # ## Example A - The Spin Boson Model # # As a first example let's try to reconstruct one of the lines in figure 2a of [Strathearn2018] ([Nat. Comm. 9, 3322 (2018)](https://doi.org/10.1038/s41467-018-05617-3) / [arXiv:1711.09641v3](https://arxiv.org/abs/1711.09641)). In this example we compute the time evolution of a spin which is strongly coupled to an ohmic bath (spin-boson model). Before we go through this step by step below, let's have a brief look at the script that will do the job - just to have an idea where we are going: # In[3]: Omega = 1.0 omega_cutoff = 5.0 alpha = 0.3 system = tempo.System(0.5 * Omega * tempo.operators.sigma("x")) correlations = tempo.PowerLawSD(alpha=alpha, zeta=1, cutoff=omega_cutoff, cutoff_type='exponential', max_correlation_time=8.0) bath = tempo.Bath(0.5 * tempo.operators.sigma("z"), correlations) tempo_parameters = tempo.TempoParameters(dt=0.1, dkmax=30, epsrel=10**(-4)) dynamics = tempo.tempo_compute(system=system, bath=bath, initial_state=tempo.operators.spin_dm("up"), start_time=0.0, end_time=15.0, parameters=tempo_parameters) t, s_z = dynamics.expectations(0.5 * tempo.operators.sigma("z"), real=True) plt.plot(t, s_z, label=r'$\alpha=0.3$') plt.xlabel(r'$t\,\Omega$')
alpha_C = 0.3 cutoff_C = 5.0 temperature_C = 0.0 # end time t_end_C = 1.0 # result obtained with release code (made hermitian, dkmax=10): rho_C = np.array( [[ 0.12576653+0.j ,-0.11739956-0.14312036j, 0.12211454-0.05963583j], [-0.11739956+0.14312036j, 0.61315893+0.j ,-0.06636825+0.26917271j], [ 0.12211454+0.05963583j,-0.06636825-0.26917271j, 0.26107455+0.j ]]) correlations_C = tempo.PowerLawSD(alpha=alpha_C, zeta=1.0, cutoff=cutoff_C, cutoff_type="exponential", temperature=temperature_C, name="ohmic") bath_C = tempo.Bath(coupling_operator_C, correlations_C, name="phonon bath") system_C = tempo.System(h_sys_C, gammas=[gamma_C_1, gamma_C_2], lindblad_operators=[lindblad_operators_C_1, lindblad_operators_C_2]) # ----------------------------------------------------------------------------- @pytest.mark.parametrize('backend',["tensor-network"]) def test_tensor_network_tempo_backend_C(backend):