示例#1
0
    def test_windowed_mean_odd_window_len(self):

        x = np.array([[0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0]], dtype=float)
        window_len = 5
        x_normed_correct = np.array([[1, 1.5, 2, 3, 18/5, 19/5, 18/5, 3, 2, 1.5, 1]])

        x_normed = time_series.windowed_mean(x, window_len)
        self.assertEqual(len(x_normed), len(x_normed_correct))
        np.testing.assert_array_almost_equal(x_normed, x_normed_correct)
示例#2
0
def variability_stim_conditioned(nwb_file, detrend_window, neurons_per_stim):
    """
    Calculate the variability of neural responses conditioned on a specific stimulus, averaged over
    basically everything, for a single experiment.
    :param nwb_file: path to experiment's .nwb file
    :param detrend_window: window length (number of timesteps) to use when detrending fluorescence traces
    :return data frame where rows are stimuli and which has columns: temporal_frequency, orientation, variability,
        most_active_neurons
    """
    print(nwb_file)
    # get and detrend fluorescence traces
    _, traces = api.get_fluorescence_traces(nwb_file)
    traces -= time_series.windowed_mean(traces, detrend_window)
    traces /= np.tile(traces.std(axis=1)[:, None], (1, traces.shape[1]))

    # get stimulus data
    stim_data = api.get_stimulus_table(nwb_file)

    # get unique stimulus conditions as list of tuples
    stim_conditions_df = api.get_stimulus_conditions(nwb_file, include_blanks=False)
    stim_conditions = [tuple(cond) for cond in stim_conditions_df.values]

    df = pd.DataFrame(columns=['temporal_frequency', 'orientation', 'variability', 'most_active_neurons'])

    for tf, ori in stim_conditions:
        # get all start and end times for this stimulus
        mask = (stim_data['temporal_frequency'] == tf) & (stim_data['orientation'] == ori)
        starts, ends = stim_data[['start', 'end']][mask].values.T
        min_dur = (ends - starts).min()
        diffs = ends - starts - min_dur
        ends[diffs > 0] -= diffs[diffs > 0]

        # get all neural responses to all repetitions of this stimulus
        responses_all = time_series.get_chunks(traces, starts, ends, axis=1)

        # find most responsive neurons
        responses_all = [time_series.subtract_first(response, axis=1) for response in responses_all]
        responsivenesses_trial = [np.abs(response).max(axis=1)[:, None] for response in responses_all]
        responsivenesses_stim = np.concatenate(responsivenesses_trial, axis=1).mean(axis=1)
        most_active_neurons = np.argsort(responsivenesses_stim)[-neurons_per_stim:]

        # get responses of active neurons only
        responses = [response[most_active_neurons, :] for response in responses_all]

        time_averaged_stds_neuron = []
        for ctr in range(neurons_per_stim):
            std = np.concatenate([response[ctr, :][None, :] for response in responses], axis=0).std(axis=0)
            time_averaged_stds_neuron.append(std.mean())

        data = {
            'temporal_frequency': tf, 'orientation': ori, 'variability': np.mean(time_averaged_stds_neuron),
            'most_active_neurons': most_active_neurons
        }
        df = df.append(data, ignore_index=True)

    return df
示例#3
0
def variability_stim_conditioned(nwb_file, detrend_window, neurons_per_stim):
    """
    Calculate the variability of neural responses conditioned on a specific stimulus, averaged over
    basically everything, for a single experiment.
    :param nwb_file: path to experiment's .nwb file
    :param detrend_window: window length (number of timesteps) to use when detrending fluorescence traces
    :return data frame where rows are stimuli and which has columns: temporal_frequency, orientation, variability,
        most_active_neurons
    """
    print(nwb_file)
    # get and detrend fluorescence traces
    _, traces = api.get_fluorescence_traces(nwb_file)
    traces -= time_series.windowed_mean(traces, detrend_window)
    traces /= np.tile(traces.std(axis=1)[:, None], (1, traces.shape[1]))

    # get stimulus data
    stim_data = api.get_stimulus_table(nwb_file)

    # get unique stimulus conditions as list of tuples
    stim_conditions_df = api.get_stimulus_conditions(nwb_file,
                                                     include_blanks=False)
    stim_conditions = [tuple(cond) for cond in stim_conditions_df.values]

    df = pd.DataFrame(columns=[
        'temporal_frequency', 'orientation', 'variability',
        'most_active_neurons'
    ])

    for tf, ori in stim_conditions:
        # get all start and end times for this stimulus
        mask = (stim_data['temporal_frequency']
                == tf) & (stim_data['orientation'] == ori)
        starts, ends = stim_data[['start', 'end']][mask].values.T
        min_dur = (ends - starts).min()
        diffs = ends - starts - min_dur
        ends[diffs > 0] -= diffs[diffs > 0]

        # get all neural responses to all repetitions of this stimulus
        responses_all = time_series.get_chunks(traces, starts, ends, axis=1)

        # find most responsive neurons
        responses_all = [
            time_series.subtract_first(response, axis=1)
            for response in responses_all
        ]
        responsivenesses_trial = [
            np.abs(response).max(axis=1)[:, None] for response in responses_all
        ]
        responsivenesses_stim = np.concatenate(responsivenesses_trial,
                                               axis=1).mean(axis=1)
        most_active_neurons = np.argsort(
            responsivenesses_stim)[-neurons_per_stim:]

        # get responses of active neurons only
        responses = [
            response[most_active_neurons, :] for response in responses_all
        ]

        time_averaged_stds_neuron = []
        for ctr in range(neurons_per_stim):
            std = np.concatenate(
                [response[ctr, :][None, :] for response in responses],
                axis=0).std(axis=0)
            time_averaged_stds_neuron.append(std.mean())

        data = {
            'temporal_frequency': tf,
            'orientation': ori,
            'variability': np.mean(time_averaged_stds_neuron),
            'most_active_neurons': most_active_neurons
        }
        df = df.append(data, ignore_index=True)

    return df