import vdj.analysis import timeseries option_parser = optparse.OptionParser() option_parser.add_option('-r','--threshold',type='float') option_parser.add_option('-o','--outputbasename') option_parser.add_option('-q','--quantify') option_parser.add_option('-n','--normalize',action='store_true') (options,args) = option_parser.parse_args() if len(args) == 1: inhandle = open(args[0],'r') else: raise ValueError, "Must give a single argument that is a timeseries data file" data = timeseries.load_timeseries(inhandle) labels = data['labels'] times = data['times'] timeseriesmatrix = data['matrix'] try: sums = data['sums'] except KeyError: sums = timeseriesmatrix.sum(axis=0) # normalize if desired if options.normalize: timeseriesmatrix = np.float_(timeseriesmatrix) / np.asarray(sums) # define which time series to plot if options.threshold:
option_parser = optparse.OptionParser() # option_parser.add_option('-x','--xxx',dest='xxxx',type='int') (options, args) = option_parser.parse_args() if len(args) == 2: inhandle = open(args[0], 'r') outhandle = open(args[1], 'w') elif len(args) == 1: inhandle = open(args[0], 'r') outhandle = sys.stdout elif len(args) == 0: inhandle = sys.stdin outhandle = sys.stdout data = timeseries.load_timeseries(inhandle) # eliminate numpy-ness of objects before JSON output np_matrix = data['matrix'] py_matrix = [] for row in np_matrix: py_matrix.append(list(row)) data['matrix'] = py_matrix data['labels'] = list(data['labels']) for label in data.keys(): if label == 'labels' or label == 'matrix': continue data[label] = list(data[label]) json.dump(data, outhandle)