def test_all_groups_missing_raises(input_df, errors): transform_df = mock.mock_raw_data(ids=[2, 3]) gp = GroupedPipeline(groupby=['id'], pipeline=Pipeline([col_selector]), errors=errors) gp.fit(input_df) with pytest.raises(KeyError, message='All keys missing in fitted pipelines'): gp.transform(transform_df)
def test_one_group_missing_return_none(input_df): transform_df = mock.mock_raw_data(ids=[0, 1, 2]) gp = GroupedPipeline(groupby=['id'], pipeline=Pipeline([val_selector]), errors='return_empty') gp.fit(input_df) out = gp.transform(transform_df) assert out.shape[1] == 1 transformed_part = transform_df[ini.Columns.target].values[:96] np.testing.assert_array_equal(out[:96, 0], transformed_part) assert np.isnan(out[96:]).all()
def test_one_groups_missing_return_df(input_df): transform_df = mock.mock_raw_data(ids=[0, 1, 2]) dt_feat = PandasDateTimeFeaturizer(attributes='month') gp = GroupedPipeline(groupby=['id'], pipeline=dt_feat, errors='return_df') gp.fit(input_df) out = gp.transform(transform_df) set(out.columns) == { 'id', ini.Columns.datetime, ini.Columns.target, 'month' } assert (~out[out.id == 0].month.isnull()).all() assert (~out[out.id == 1].month.isnull()).all() assert (out[out.id == 2].month.isnull()).all() orig_cols = ['id', ini.Columns.datetime, ini.Columns.target] pd.testing.assert_frame_equal(out[orig_cols], transform_df)
def test_raises_when_missing_key(input_df): transform_df = mock.mock_raw_data(ids=[0, 1, 2]) gp = GroupedPipeline(groupby=['id'], pipeline=Pipeline([col_selector])) gp.fit(input_df) with pytest.raises(KeyError, message="Missing key 2 in fitted pipelines"): gp.transform(transform_df)