示例#1
0
def test_grad_of_grad():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = x2 * x2 + x2 * x3

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])
    grad_x2_x2, grad_x2_x3 = ad.gradients(grad_x2, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3, grad_x2_x2, grad_x2_x3])
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x2_val, grad_x3_val, grad_x2_x2_val, grad_x2_x3_val = executor.run(
        feed_dict={x2: x2_val, x3: x3_val}
    )

    expected_yval = x2_val * x2_val + x2_val * x3_val
    expected_grad_x2_val = 2 * x2_val + x3_val
    expected_grad_x3_val = x2_val
    expected_grad_x2_x2_val = 2 * np.ones_like(x2_val)
    expected_grad_x2_x3_val = 1 * np.ones_like(x2_val)

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
    assert np.array_equal(grad_x2_x2_val, expected_grad_x2_x2_val)
    assert np.array_equal(grad_x2_x3_val, expected_grad_x2_x3_val)
示例#2
0
def test_lr():
    W = ad.Variable(name="W")
    b = ad.Variable(name="b")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    z = ad.matmul_op(X, W) + b
    loss = ad.sigmoidcrossentropy_op(z, y_)

    grad_W, grad_b = ad.gradients(loss, [W, b])
示例#3
0
def test_mul_two_vars():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = x2 * x3

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val})

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, x2_val * x3_val)
    assert np.array_equal(grad_x2_val, x3_val)
    assert np.array_equal(grad_x3_val, x2_val)
示例#4
0
def test_add_mul_mix_1():
    x1 = ad.Variable(name="x1")
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = x1 + x2 * x3 * x1

    grad_x1, grad_x2, grad_x3 = ad.gradients(y, [x1, x2, x3])

    executor = ad.Executor([y, grad_x1, grad_x2, grad_x3])
    x1_val = 1 * np.ones(3)
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x1_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x1: x1_val, x2: x2_val, x3: x3_val})

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, x1_val + x2_val * x3_val)
    assert np.array_equal(grad_x1_val, np.ones_like(x1_val) + x2_val * x3_val)
    assert np.array_equal(grad_x2_val, x3_val * x1_val)
    assert np.array_equal(grad_x3_val, x2_val * x1_val)
示例#5
0
def test_exp_grad():
    x = ad.Variable("x")
    y = ad.exp_op(x)

    x_grad, = ad.gradients(y, [x])

    executor = ad.Executor([y, x_grad])
    x_val = 1
    y_val, x_grad_val = executor.run(feed_dict={x: x_val})
    print(y_val)
    print(x_grad_val)
示例#6
0
def test_matmul_two_vars():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = ad.matmul_op(x2, x3)

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = np.array([[1, 2], [3, 4], [5, 6]])  # 3x2
    x3_val = np.array([[7, 8, 9], [10, 11, 12]])  # 2x3

    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val})

    expected_yval = np.matmul(x2_val, x3_val)
    expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(x3_val))
    expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval))

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
示例#7
0
def test_add_mul_mix_3():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    z = x2 * x2 + x2 + x3 + 3
    y = z * z + x3

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = 2 * np.ones(3)
    x3_val = 3 * np.ones(3)
    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val})

    z_val = x2_val * x2_val + x2_val + x3_val + 3
    expected_yval = z_val * z_val + x3_val
    expected_grad_x2_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) * (2 * x2_val + 1)
    expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1
    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
示例#8
0
def test_identity():
    x2 = ad.Variable(name="x2")
    y = x2

    grad_x2, = ad.gradients(y, [x2])

    executor = ad.Executor([y, grad_x2])
    x2_val = 2 * np.ones(3)
    y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val})

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, x2_val)
    assert np.array_equal(grad_x2_val, np.ones_like(x2_val))
示例#9
0
def test_exp():
    x1 = ad.Variable("x1")
    x2 = ad.exp_op(x1)
    x3 = x2 + 1
    x4 = x2 * x3

    x1_grad, = ad.gradients(x4, [x1])

    executor = ad.Executor([x4])
    x1_val = 1
    x4_val, x1_grad = executor.run(feed_dict={x1: x1_val})
    print(x4_val)
    print(x1_grad)
示例#10
0
def mnist_logreg(executor_ctx=None,
                 num_epochs=10,
                 print_loss_val_each_epoch=False):
    print("Build logistic regression model...")

    W1 = ad.Variable(name="W1")
    b1 = ad.Variable(name="b1")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    z1 = ad.matmul_op(X, W1)
    y = z1 + ad.broadcastto_op(b1, z1)

    loss = ad.softmaxcrossentropy_op(y, y_)

    grad_W1, grad_b1 = ad.gradients(loss, [W1, b1])
    executor = ad.Executor([loss, grad_W1, grad_b1, y], ctx=executor_ctx)

    # Read input data
    datasets = load_mnist_data("mnist.pkl.gz")
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # Set up minibatch
    batch_size = 1000
    n_train_batches = train_set_x.shape[0] // batch_size
    n_valid_batches = valid_set_x.shape[0] // batch_size

    print("Start training loop...")

    # Initialize parameters
    W1_val = np.zeros((784, 10))
    b1_val = np.zeros((10))
    X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    if ndarray.is_gpu_ctx(executor_ctx):
        W1_val = ndarray.array(W1_val, ctx=executor_ctx)
        b1_val = ndarray.array(b1_val, ctx=executor_ctx)
        X_val = ndarray.array(X_val, ctx=executor_ctx)
        y_val = ndarray.array(y_val, ctx=executor_ctx)

    lr = 1e-3
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_set_x[minibatch_start:minibatch_end]
            y_val[:] = convert_to_one_hot(
                train_set_y[minibatch_start:minibatch_end])
            loss_val, grad_W1_val, grad_b1_val, _ = executor.run(feed_dict={
                X: X_val,
                y_: y_val,
                W1: W1_val,
                b1: b1_val
            })
            # SGD update
            if (executor_ctx is None):
                W1_val = W1_val - lr * grad_W1_val
                b1_val = b1_val - lr * grad_b1_val
            else:
                sgd_update_gpu(W1_val, grad_W1_val, lr)
                sgd_update_gpu(b1_val, grad_b1_val, lr)
        if print_loss_val_each_epoch:
            if isinstance(loss_val, ndarray.NDArray):
                print(loss_val.asnumpy())
            else:
                print(loss_val)

    correct_predictions = []
    for minibatch_index in range(n_valid_batches):
        minibatch_start = minibatch_index * batch_size
        minibatch_end = (minibatch_index + 1) * batch_size
        valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end]
        valid_y_val[:] = convert_to_one_hot(
            valid_set_y[minibatch_start:minibatch_end])
        _, _, _, valid_y_predicted = executor.run(
            feed_dict={
                X: valid_X_val,
                y_: valid_y_val,
                W1: W1_val,
                b1: b1_val
            },
            convert_to_numpy_ret_vals=True)
        correct_prediction = np.equal(np.argmax(valid_y_val, 1),
                                      np.argmax(valid_y_predicted,
                                                1)).astype(np.float)
        correct_predictions.extend(correct_prediction)
    accuracy = np.mean(correct_predictions)
    # validation set accuracy=0.928200
    print("validation set accuracy=%f" % accuracy)
示例#11
0
def mnist_mlp(executor_ctx=None,
              num_epochs=10,
              print_loss_val_each_epoch=False):
    print("Build 3-layer MLP model...")

    W1 = ad.Variable(name="W1")
    W2 = ad.Variable(name="W2")
    W3 = ad.Variable(name="W3")
    b1 = ad.Variable(name="b1")
    b2 = ad.Variable(name="b2")
    b3 = ad.Variable(name="b3")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    # relu(X W1+b1)
    z1 = ad.matmul_op(X, W1)
    z2 = z1 + ad.broadcastto_op(b1, z1)
    z3 = ad.relu_op(z2)

    # relu(z3 W2+b2)
    z4 = ad.matmul_op(z3, W2)
    z5 = z4 + ad.broadcastto_op(b2, z4)
    z6 = ad.relu_op(z5)

    # softmax(z5 W2+b2)
    z7 = ad.matmul_op(z6, W3)
    y = z7 + ad.broadcastto_op(b3, z7)

    loss = ad.softmaxcrossentropy_op(y, y_)

    grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3 = ad.gradients(
        loss, [W1, W2, W3, b1, b2, b3])
    executor = ad.Executor(
        [loss, grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3, y],
        ctx=executor_ctx)

    # Read input data
    datasets = load_mnist_data("mnist.pkl.gz")
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]
    # Set up minibatch
    batch_size = 1000
    n_train_batches = train_set_x.shape[0] // batch_size
    n_valid_batches = valid_set_x.shape[0] // batch_size

    print("Start training loop...")

    # Initialize parameters
    rand = np.random.RandomState(seed=123)
    W1_val = rand.normal(scale=0.1, size=(784, 256))
    W2_val = rand.normal(scale=0.1, size=(256, 100))
    W3_val = rand.normal(scale=0.1, size=(100, 10))
    b1_val = rand.normal(scale=0.1, size=(256))
    b2_val = rand.normal(scale=0.1, size=(100))
    b3_val = rand.normal(scale=0.1, size=(10))
    X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    if ndarray.is_gpu_ctx(executor_ctx):
        W1_val = ndarray.array(W1_val, ctx=executor_ctx)
        W2_val = ndarray.array(W2_val, ctx=executor_ctx)
        W3_val = ndarray.array(W3_val, ctx=executor_ctx)
        b1_val = ndarray.array(b1_val, ctx=executor_ctx)
        b2_val = ndarray.array(b2_val, ctx=executor_ctx)
        b3_val = ndarray.array(b3_val, ctx=executor_ctx)
        X_val = ndarray.array(X_val, ctx=executor_ctx)
        y_val = ndarray.array(y_val, ctx=executor_ctx)

    lr = 1.0e-3
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_set_x[minibatch_start:minibatch_end]
            y_val[:] = convert_to_one_hot(
                train_set_y[minibatch_start:minibatch_end])
            loss_val, grad_W1_val, grad_W2_val, grad_W3_val, \
                grad_b1_val, grad_b2_val, grad_b3_val, _ = executor.run(
                    feed_dict={
                        X: X_val,
                        y_: y_val,
                        W1: W1_val,
                        W2: W2_val,
                        W3: W3_val,
                        b1: b1_val,
                        b2: b2_val,
                        b3: b3_val})
            # SGD update
            if (executor_ctx is None):
                W1_val = W1_val - lr * grad_W1_val
                W2_val = W2_val - lr * grad_W2_val
                W3_val = W3_val - lr * grad_W3_val
                b1_val = b1_val - lr * grad_b1_val
                b2_val = b2_val - lr * grad_b2_val
                b3_val = b3_val - lr * grad_b3_val
            else:
                sgd_update_gpu(W1_val, grad_W1_val, lr)
                sgd_update_gpu(W2_val, grad_W2_val, lr)
                sgd_update_gpu(W3_val, grad_W3_val, lr)
                sgd_update_gpu(b1_val, grad_b1_val, lr)
                sgd_update_gpu(b2_val, grad_b2_val, lr)
                sgd_update_gpu(b3_val, grad_b3_val, lr)
        if print_loss_val_each_epoch:
            if isinstance(loss_val, ndarray.NDArray):
                print(loss_val.asnumpy())
            else:
                print(loss_val)

    correct_predictions = []
    for minibatch_index in range(n_valid_batches):
        minibatch_start = minibatch_index * batch_size
        minibatch_end = (minibatch_index + 1) * batch_size
        valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end]
        valid_y_val[:] = convert_to_one_hot(
            valid_set_y[minibatch_start:minibatch_end])
        _, _, _, _, _, _, _, valid_y_predicted = executor.run(
            feed_dict={
                X: valid_X_val,
                y_: valid_y_val,
                W1: W1_val,
                W2: W2_val,
                W3: W3_val,
                b1: b1_val,
                b2: b2_val,
                b3: b3_val
            },
            convert_to_numpy_ret_vals=True)
        correct_prediction = np.equal(np.argmax(valid_y_val, 1),
                                      np.argmax(valid_y_predicted,
                                                1)).astype(np.float)
        correct_predictions.extend(correct_prediction)
    accuracy = np.mean(correct_predictions)
    # validation set accuracy=0.970800
    print("validation set accuracy=%f" % accuracy)