def run(job_name, supplied_mon_coords=[]): pipe_config = initialize_pipeline_config( os.path.join(os.getcwd(), "pipeline.cfg"), job_name) # get parallelise props. Defaults to multiproc with autodetect num cores parallelise = pipe_config.get('parallelise', {}) distributor = os.environ.get('TKP_PARALLELISE', parallelise.get('method', 'multiproc')) runner = Runner(distributor=distributor, cores=parallelise.get('cores', 0)) debug = pipe_config.logging.debug #Setup logfile before we do anything else log_dir = pipe_config.logging.log_dir setup_log_file(log_dir, debug) job_dir = pipe_config.DEFAULT.job_directory if not os.access(job_dir, os.X_OK): msg = "can't access job folder %s" % job_dir logger.error(msg) raise IOError(msg) logger.info("Job dir: %s", job_dir) db_config = get_database_config(pipe_config.database, apply=True) dump_database_backup(db_config, job_dir) job_config = load_job_config(pipe_config) se_parset = job_config.source_extraction deruiter_radius = job_config.association.deruiter_radius beamwidths_limit = job_config.association.beamwidths_limit new_src_sigma = job_config.transient_search.new_source_sigma_margin all_images = imp.load_source('images_to_process', os.path.join(job_dir, 'images_to_process.py')).images logger.info("dataset %s contains %s images" % (job_name, len(all_images))) logger.info("performing database consistency check") if not dbconsistency.check(): logger.error("Inconsistent database found; aborting") return 1 dataset_id = create_dataset(job_config.persistence.dataset_id, job_config.persistence.description) if job_config.persistence.dataset_id == -1: store_config(job_config, dataset_id) # new data set if supplied_mon_coords: dbgen.insert_monitor_positions(dataset_id,supplied_mon_coords) else: job_config_from_db = fetch_config(dataset_id) # existing data set if check_job_configs_match(job_config, job_config_from_db): logger.debug("Job configs from file / database match OK.") else: logger.warn("Job config file has changed since dataset was " "first loaded into database. ") logger.warn("Using job config settings loaded from database, see " "log dir for details") job_config = job_config_from_db if supplied_mon_coords: logger.warn("Monitor positions supplied will be ignored. " "(Previous dataset specified)") dump_configs_to_logdir(log_dir, job_config, pipe_config) logger.info("performing persistence step") image_cache_params = pipe_config.image_cache imgs = [[img] for img in all_images] rms_est_sigma = job_config.persistence.rms_est_sigma rms_est_fraction = job_config.persistence.rms_est_fraction metadatas = runner.map("persistence_node_step", imgs, [image_cache_params, rms_est_sigma, rms_est_fraction]) metadatas = [m[0] for m in metadatas if m] logger.info("Storing images") image_ids = store_images(metadatas, job_config.source_extraction.extraction_radius_pix, dataset_id) db_images = [Image(id=image_id) for image_id in image_ids] logger.info("performing quality check") urls = [img.url for img in db_images] arguments = [job_config] rejecteds = runner.map("quality_reject_check", urls, arguments) good_images = [] for image, rejected in zip(db_images, rejecteds): if rejected: reason, comment = rejected steps.quality.reject_image(image.id, reason, comment) else: good_images.append(image) if not good_images: logger.warn("No good images under these quality checking criteria") return grouped_images = group_per_timestep(good_images) timestep_num = len(grouped_images) for n, (timestep, images) in enumerate(grouped_images): msg = "processing %s images in timestep %s (%s/%s)" logger.info(msg % (len(images), timestep, n+1, timestep_num)) logger.info("performing source extraction") urls = [img.url for img in images] arguments = [se_parset] extraction_results = runner.map("extract_sources", urls, arguments) logger.info("storing extracted sources to database") # we also set the image max,min RMS values which calculated during # source extraction for image, results in zip(images, extraction_results): image.update(rms_min=results.rms_min, rms_max=results.rms_max, detection_thresh=se_parset['detection_threshold'], analysis_thresh=se_parset['analysis_threshold']) dbgen.insert_extracted_sources(image.id, results.sources, 'blind') logger.info("performing database operations") for image in images: logger.info("performing DB operations for image %s" % image.id) logger.info("performing source association") dbass.associate_extracted_sources(image.id, deRuiter_r=deruiter_radius, new_source_sigma_margin=new_src_sigma) expiration = job_config.source_extraction.expiration all_fit_posns, all_fit_ids = steps_ff.get_forced_fit_requests(image, expiration) if all_fit_posns: successful_fits, successful_ids = steps_ff.perform_forced_fits( all_fit_posns, all_fit_ids, image.url, se_parset) steps_ff.insert_and_associate_forced_fits(image.id,successful_fits, successful_ids) dbgen.update_dataset_process_end_ts(dataset_id) logger.info("calculating variability metrics") execute_store_varmetric(dataset_id)
def varmetric(dataset_id): logger.info("calculating variability metrics") execute_store_varmetric(dataset_id)
def test_execute_store_varmetric_twice(self): session = self.db.Session() execute_store_varmetric(session=session, dataset_id=self.dataset.id) self.session.flush() execute_store_varmetric(session=session, dataset_id=self.dataset.id) self.session.flush()
def test_execute_store_varmetric(self): session = self.db.Session() execute_store_varmetric(session=session, dataset_id=self.dataset.id)