def test_infinite(self): # Check that database insertion doesn't choke on infinite errors. dataset = DataSet(data={'description': 'example dataset'}, database=self.database) image = Image(dataset=dataset, data=db_subs.example_dbimage_data_dict()) # Inserting a standard example extractedsource should be fine extracted_source = db_subs.example_extractedsource_tuple() image.insert_extracted_sources([extracted_source]) inserted = columns_from_table('extractedsource', where= {'image' : image.id}) self.assertEqual(len(inserted), 1) # But if the source has infinite errors we drop it and log a warning extracted_source = db_subs.example_extractedsource_tuple(error_radius=float('inf'), peak_err=float('inf'), flux_err=float('inf')) # We will add a handler to the root logger which catches all log # output in a buffer. iostream = BytesIO() hdlr = logging.StreamHandler(iostream) logging.getLogger().addHandler(hdlr) image.insert_extracted_sources([extracted_source]) logging.getLogger().removeHandler(hdlr) # We want to be sure that the error has been appropriately logged. self.assertIn("Dropped source fit with infinite flux errors", iostream.getvalue()) inserted = columns_from_table('extractedsource', where= {'image' : image.id}) self.assertEqual(len(inserted), 1)
def test_two_field_overlap_new_transient(self): """Now for something more interesting - two overlapping fields, 4 sources: one steady source only in lower field, one steady source in both fields, one steady source only in upper field, one transient source in both fields but only at 2nd timestep. """ n_images = 2 xtr_radius = 1.5 im_params = db_subs.example_dbimage_datasets(n_images, xtr_radius=xtr_radius) im_params[1]['centre_decl'] += xtr_radius * 1 imgs = [] lower_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] - 0.5 * xtr_radius) upper_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[1]['centre_ra'], dec=im_params[1]['centre_decl'] + 0.5 * xtr_radius) overlap_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.2 * xtr_radius) overlap_transient = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.8 * xtr_radius) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[0])) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[1])) imgs[0].insert_extracted_sources([lower_steady_src, overlap_steady_src]) nd_posns = dbmon.get_nulldetections(imgs[0].id, deRuiter_r=1) self.assertEqual(len(nd_posns), 0) imgs[0].associate_extracted_sources(deRuiter_r=0.1) imgs[1].insert_extracted_sources([upper_steady_src, overlap_steady_src, overlap_transient]) nd_posns = dbmon.get_nulldetections(imgs[1].id, deRuiter_r=1) self.assertEqual(len(nd_posns), 0) imgs[1].associate_extracted_sources(deRuiter_r=0.1) runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) self.assertEqual(len(runcats), 4) #sanity check. monlist = columns_from_table('monitoringlist', where={'dataset': self.dataset.id}) self.assertEqual(len(monlist), 1) transients_qry = """\ SELECT * FROM transient tr ,runningcatalog rc WHERE rc.dataset = %s AND tr.runcat = rc.id """ self.database.cursor.execute(transients_qry, (self.dataset.id,)) transients = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(transients), 1)
def test_two_field_overlap_new_transient(self): """Now for something more interesting - two overlapping fields, 4 sources: one steady source only in lower field, one steady source in both fields, one steady source only in upper field, one transient source in both fields but only at 2nd timestep. """ n_images = 2 xtr_radius = 1.5 im_params = db_subs.generate_timespaced_dbimages_data( n_images, xtr_radius=xtr_radius) im_params[1]['centre_decl'] += xtr_radius * 1 imgs = [] lower_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] - 0.5 * xtr_radius) upper_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[1]['centre_ra'], dec=im_params[1]['centre_decl'] + 0.5 * xtr_radius) overlap_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.2 * xtr_radius) overlap_transient = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.8 * xtr_radius) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[0])) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[1])) imgs[0].insert_extracted_sources( [lower_steady_src, overlap_steady_src]) imgs[0].associate_extracted_sources( deRuiter_r=0.1, new_source_sigma_margin=new_source_sigma_margin) nd_posns = dbnd.get_nulldetections(imgs[0].id) self.assertEqual(len(nd_posns), 0) imgs[1].insert_extracted_sources( [upper_steady_src, overlap_steady_src, overlap_transient]) imgs[1].associate_extracted_sources( deRuiter_r=0.1, new_source_sigma_margin=new_source_sigma_margin) nd_posns = dbnd.get_nulldetections(imgs[1].id) self.assertEqual(len(nd_posns), 0) runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) self.assertEqual(len(runcats), 4) #sanity check. newsources_qry = """\ SELECT * FROM newsource tr ,runningcatalog rc WHERE rc.dataset = %s AND tr.runcat = rc.id """ self.database.cursor.execute(newsources_qry, (self.dataset.id, )) newsources = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(newsources), 1)
def test_two_field_overlap_nulling_src(self): """Similar to above, but one source disappears: Two overlapping fields, 4 sources: one steady source only in lower field, one steady source in both fields, one steady source only in upper field, one transient source in both fields but only at *1st* timestep. """ n_images = 2 xtr_radius = 1.5 im_params = db_subs.generate_timespaced_dbimages_data( n_images, xtr_radius=xtr_radius) im_params[1]['centre_decl'] += xtr_radius * 1 imgs = [] lower_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] - 0.5 * xtr_radius) upper_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[1]['centre_ra'], dec=im_params[1]['centre_decl'] + 0.5 * xtr_radius) overlap_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.2 * xtr_radius) overlap_transient = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.8 * xtr_radius) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[0])) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[1])) insert_extracted_sources( imgs[0]._id, [lower_steady_src, overlap_steady_src, overlap_transient]) associate_extracted_sources( imgs[0]._id, deRuiter_r=0.1, new_source_sigma_margin=new_source_sigma_margin) nd_posns = dbnd.get_nulldetections(imgs[0].id) self.assertEqual(len(nd_posns), 0) insert_extracted_sources(imgs[1]._id, [upper_steady_src, overlap_steady_src]) associate_extracted_sources( imgs[1]._id, deRuiter_r=0.1, new_source_sigma_margin=new_source_sigma_margin) #This time we don't expect to get an immediate transient detection, #but we *do* expect to get a null-source forced extraction request: nd_posns = dbnd.get_nulldetections(imgs[1].id) self.assertEqual(len(nd_posns), 1) runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) self.assertEqual(len(runcats), 4) #sanity check.
def test_infinite(self): # Check that database insertion doesn't choke on infinite errors dataset = DataSet(data={'description': 'example dataset'}, database=self.database) image = Image(dataset=dataset, data=db_subs.example_dbimage_datasets(1)[0]) # Inserting an example extractedsource should be fine extracted_source = db_subs.example_extractedsource_tuple() image.insert_extracted_sources([extracted_source]) # But it should also be fine if the source has infinite errors extracted_source = db_subs.example_extractedsource_tuple(error_radius=float('inf')) image.insert_extracted_sources([extracted_source])
def test_two_field_overlap_nulling_src(self): """Similar to above, but one source disappears: Two overlapping fields, 4 sources: one steady source only in lower field, one steady source in both fields, one steady source only in upper field, one transient source in both fields but only at *1st* timestep. """ n_images = 2 xtr_radius = 1.5 im_params = db_subs.generate_timespaced_dbimages_data(n_images, xtr_radius=xtr_radius) im_params[1]['centre_decl'] += xtr_radius * 1 imgs = [] lower_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] - 0.5 * xtr_radius) upper_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[1]['centre_ra'], dec=im_params[1]['centre_decl'] + 0.5 * xtr_radius) overlap_steady_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.2 * xtr_radius) overlap_transient = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'] + 0.8 * xtr_radius) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[0])) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[1])) imgs[0].insert_extracted_sources([lower_steady_src, overlap_steady_src, overlap_transient]) imgs[0].associate_extracted_sources(deRuiter_r=0.1, new_source_sigma_margin=new_source_sigma_margin) nd_posns = dbnd.get_nulldetections(imgs[0].id) self.assertEqual(len(nd_posns), 0) imgs[1].insert_extracted_sources([upper_steady_src, overlap_steady_src]) imgs[1].associate_extracted_sources(deRuiter_r=0.1, new_source_sigma_margin=new_source_sigma_margin) #This time we don't expect to get an immediate transient detection, #but we *do* expect to get a null-source forced extraction request: nd_posns = dbnd.get_nulldetections(imgs[1].id) self.assertEqual(len(nd_posns), 1) runcats = columns_from_table('runningcatalog', where={'dataset':self.dataset.id}) self.assertEqual(len(runcats), 4) #sanity check.
def test_probably_not_a_transient(self): """ No source at 250MHz, but we detect a source at 50MHz. Not necessarily a transient. Should trivially ignore 250MHz data when looking at a new 50MHz source. """ img_params = self.img_params img0 = img_params[0] # This time around, we just manually exclude the steady src from # the first image detections. steady_low_freq_src = MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl'] ), lightcurve=defaultdict(lambda :self.always_detectable_flux) ) # Insert first image, no sources. tkp.db.Image(data=img_params[0],dataset=self.dataset) # Now set up second image. img1 = tkp.db.Image(data=img_params[1],dataset=self.dataset) xtr = steady_low_freq_src.simulate_extraction(img1, extraction_type='blind') insert_extracted_sources(img1._id, [xtr], 'blind') associate_extracted_sources(img1._id, deRuiter_r, self.new_source_sigma_margin) transients = get_newsources_for_dataset(self.dataset.id) # Should have no marked transients self.assertEqual(len(transients), 0)
def test_null_detection_business_as_usual(self): """ If we do not blindly extract a steady source due to increased RMS, then we expect a null-detection forced-fit to be triggered. However, if the source properties are steady, this should not result in the source being identified as transient. """ img0 = self.img_params[0] steady_src_flux = self.barely_detectable_flux steady_src = MockSource( example_extractedsource_tuple(ra=img0['centre_ra'], dec=img0['centre_decl'] ), lightcurve=defaultdict(lambda :steady_src_flux) ) image, blind_xtr,forced_fits = insert_image_and_simulated_sources( self.dataset,self.img_params[0],[steady_src], self.new_source_sigma_margin) self.assertEqual(len(blind_xtr),1) self.assertEqual(len(forced_fits),0) image, blind_xtr,forced_fits = insert_image_and_simulated_sources( self.dataset,self.img_params[1],[steady_src], self.new_source_sigma_margin) self.assertEqual(len(blind_xtr),0) self.assertEqual(len(forced_fits),1) get_sources_filtered_by_final_variability(dataset_id=self.dataset.id, **self.search_params) transients=get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(transients),0)
def main(): database = tkp.db.Database() dataset = tkp.db.DataSet(data={'description': "Banana test data"}, database=database) n_images = 4 new_source_sigma_margin = 3 image_rms = 1e-3 detection_thresh = 10 reliably_detectable_flux = 1.01 * image_rms * (detection_thresh + new_source_sigma_margin) # 1mJy image RMS, 10-sigma detection threshold = 10mJy threshold. test_specific_img_params = {'rms_qc': image_rms, 'rms_min': image_rms, 'rms_max': image_rms, 'detection_thresh': detection_thresh} im_params = db_subs.generate_timespaced_dbimages_data(n_images, **test_specific_img_params) src_tuple = db_subs.example_extractedsource_tuple(ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'],) transient_src = db_subs.MockSource( template_extractedsource=src_tuple, lightcurve={im_params[2]['taustart_ts']: reliably_detectable_flux} ) for img_pars in im_params: db_subs.insert_image_and_simulated_sources(dataset, img_pars, [transient_src], new_source_sigma_margin) tkp.db.execute("insert into monitor values(1, 1, 1, 1, 1, 'bla')", commit=True)
def test_one2oneflux(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-1'}) n_images = 3 im_params = db_subs.example_dbimage_datasets(n_images) src_list = [] src = db_subs.example_extractedsource_tuple() src0 = src._replace(flux=2.0) src_list.append(src0) src1 = src._replace(flux=2.5) src_list.append(src1) src2 = src._replace(flux=2.4) src_list.append(src2) for idx, im in enumerate(im_params): image = tkp.db.Image(database=self.database, dataset=dataset, data=im) image.insert_extracted_sources([src_list[idx]]) associate_extracted_sources(image.id, deRuiter_r=3.717) query = """\ SELECT rf.avg_f_int FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat """ self.database.cursor.execute(query, {'dataset': dataset.id}) result = zip(*self.database.cursor.fetchall()) avg_f_int = result[0] self.assertEqual(len(avg_f_int), 1) self.assertAlmostEqual(avg_f_int[0], 2.3)
def TestMeridianLowerEdgeCase(self): """What happens if a source is right on the meridian?""" dataset = DataSet(data={'description':"Assoc 1-to-1:" + self._testMethodName}) n_images = 3 im_params = db_subs.example_dbimage_datasets(n_images, centre_ra=0.5, centre_decl=10) src_list = [] src0 = db_subs.example_extractedsource_tuple(ra=0.0002, dec=10.5, ra_fit_err=0.01, dec_fit_err=0.01) src_list.append(src0) src1 = src0._replace(ra=0.0003) src_list.append(src1) src2 = src0._replace(ra=0.0004) src_list.append(src2) for idx, im in enumerate(im_params): im['centre_ra'] = 359.9 image = tkp.db.Image(dataset=dataset, data=im) image.insert_extracted_sources([src_list[idx]]) associate_extracted_sources(image.id, deRuiter_r=3.717) runcat = columns_from_table('runningcatalog', ['datapoints', 'wm_ra'], where={'dataset':dataset.id}) # print "***\nRESULTS:", runcat, "\n*****" self.assertEqual(len(runcat), 1) self.assertEqual(runcat[0]['datapoints'], 3) avg_ra = (src0.ra + src1.ra +src2.ra)/3 self.assertAlmostEqual(runcat[0]['wm_ra'], avg_ra)
def test_basic_same_field_case(self): """ Here we start with 1 source in image0. We then add image1 (same field as image0), with a double association for the source, and check assocskyrgn updates correctly. """ n_images = 2 im_params = db_subs.generate_timespaced_dbimages_data(n_images) idx = 0 src_a = db_subs.example_extractedsource_tuple( ra=im_params[idx]['centre_ra'], dec=im_params[idx]['centre_decl']) src_b = src_a._replace(ra=src_a.ra + 1. / 60.) # 1 arcminute offset imgs = [] imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) imgs[idx].insert_extracted_sources([src_a]) imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin) idx = 1 imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) imgs[idx].insert_extracted_sources([src_a, src_b]) imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin) imgs[idx].update() runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) self.assertEqual(len(runcats), 2) #Just a sanity check. skyassocs = columns_from_table( 'assocskyrgn', where={'skyrgn': imgs[idx]._data['skyrgn']}) self.assertEqual(len(skyassocs), 2)
def test_marginal_transient(self): """ ( flux1 > (rms_min0*(det0 + margin) ) but ( flux1 < (rms_max0*(det0 + margin) ) --> Possible transient If it was in a region of rms_min, we would (almost certainly) have seen it in the first image. So new source --> Possible transient. But if it was in a region of rms_max, then perhaps we would have missed it. In which case, new source --> Just seeing deeper. Note that if we are tiling overlapping images, then the first time a field is processed with image-centre at the edge of the old field, we may get a bunch of unhelpful 'possible transients'. Furthermore, this will pick up fluctuating sources near the image-margins even with a fixed field of view. But without a more complex store of image-rms-per-position, we cannot do better. Hopefully we can use a 'distance from centre' feature to separate out the good and bad candidates in this case. """ img_params = self.img_params #Must pick flux value carefully to fire correct logic branch: marginal_transient_flux = self.reliably_detected_at_image_centre_flux marginal_transient = MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl']), lightcurve={img_params[1]['taustart_ts'] : marginal_transient_flux} ) #First, check that we've set up the test correctly: rms_min0 = img_params[0]['rms_min'] rms_max0 = img_params[0]['rms_max'] det0 = img_params[0]['detection_thresh'] self.assertTrue(marginal_transient_flux < rms_max0*(det0 + self.new_source_sigma_margin ) ) self.assertTrue(marginal_transient_flux > rms_min0*(det0 + self.new_source_sigma_margin ) ) for pars in self.img_params: img = tkp.db.Image(data=pars,dataset=self.dataset) xtr = marginal_transient.simulate_extraction(img, extraction_type='blind') if xtr is not None: img.insert_extracted_sources([xtr],'blind') img.associate_extracted_sources(deRuiter_r, self.new_source_sigma_margin) newsources = get_newsources_for_dataset(self.dataset.id) #Should have one 'possible' transient self.assertEqual(len(newsources),1) self.assertTrue( newsources[0]['low_thresh_sigma'] > self.new_source_sigma_margin) self.assertTrue( newsources[0]['high_thresh_sigma'] < self.new_source_sigma_margin)
def test_steady_source(self): """ Sanity check: Ensure we get no newsource table entries for a steady source. """ im_params = self.im_params steady_src = db_subs.MockSource( template_extractedsource=db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ), lightcurve=defaultdict(lambda : self.reliably_detectable_flux) ) inserted_sources = [] for img_pars in im_params: image, _,forced_fits = insert_image_and_simulated_sources( self.dataset,img_pars,[steady_src], self.new_source_sigma_margin) #should not have any nulldetections self.assertEqual(len(forced_fits), 0) transients = get_sources_filtered_by_final_variability( dataset_id=self.dataset.id, **self.search_params) newsources = get_newsources_for_dataset(self.dataset.id) #or newsources, high variability sources self.assertEqual(len(transients), 0) self.assertEqual(len(newsources), 0)
def test_single_epoch_weak_transient(self): """ A weak (barely detected in blind extraction) transient appears at field centre in one image, then disappears entirely. Because it is a weak extraction, it will not be immediately marked as transient, but it will get flagged up after forced-fitting due to the variability search. """ im_params = self.im_params transient_src = db_subs.MockSource( template_extractedsource=db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ), lightcurve={im_params[2]['taustart_ts'] : self.barely_detectable_flux} ) inserted_sources = [] for img_pars in im_params[:3]: image, _,forced_fits = insert_image_and_simulated_sources( self.dataset,img_pars,[transient_src], self.new_source_sigma_margin) self.assertEqual(forced_fits, []) newsources = get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(newsources), 0) transients = get_sources_filtered_by_final_variability( dataset_id=self.dataset.id, **self.search_params) #No variability yet self.assertEqual(len(transients), 0) #Now, the final, empty image: image, blind_extractions, forced_fits = insert_image_and_simulated_sources( self.dataset,im_params[3],[transient_src], self.new_source_sigma_margin) self.assertEqual(len(blind_extractions),0) self.assertEqual(len(forced_fits), 1) #No changes to newsource table newsources = get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(newsources), 0) #But it now has high variability transients = get_sources_filtered_by_final_variability( dataset_id=self.dataset.id, **self.search_params) self.assertEqual(len(transients), 1) transient_properties = transients[0] # Check that the bands for the images are the same as the transient's band freq_bands = self.dataset.frequency_bands() self.assertEqual(len(freq_bands), 1) self.assertEqual(freq_bands[0], transient_properties['band']) #Sanity check that the runcat is correctly matched runcats = self.dataset.runcat_entries() self.assertEqual(len(runcats), 1) self.assertEqual(runcats[0]['runcat'], transient_properties['runcat_id'])
def test_probably_not_a_transient(self): """ No source at 250MHz, but we detect a source at 50MHz. Not necessarily a transient. Should trivially ignore 250MHz data when looking at a new 50MHz source. """ img_params = self.img_params img0 = img_params[0] # This time around, we just manually exclude the steady src from # the first image detections. steady_low_freq_src = MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl']), lightcurve=defaultdict(lambda: self.always_detectable_flux)) # Insert first image, no sources. tkp.db.Image(data=img_params[0], dataset=self.dataset) # Now set up second image. img1 = tkp.db.Image(data=img_params[1], dataset=self.dataset) xtr = steady_low_freq_src.simulate_extraction(img1, extraction_type='blind') insert_extracted_sources(img1._id, [xtr], 'blind') associate_extracted_sources(img1._id, deRuiter_r, self.new_source_sigma_margin) transients = get_newsources_for_dataset(self.dataset.id) # Should have no marked transients self.assertEqual(len(transients), 0)
def test_basic_same_field_case(self): """ Here we start with 1 source in image0. We then add image1 (same field as image0), with a double association for the source, and check assocskyrgn updates correctly. """ n_images = 2 im_params = db_subs.generate_timespaced_dbimages_data(n_images) idx = 0 src_a = db_subs.example_extractedsource_tuple( ra=im_params[idx]['centre_ra'], dec=im_params[idx]['centre_decl']) src_b = src_a._replace(ra=src_a.ra + 1. / 60.) # 1 arcminute offset imgs = [] imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) imgs[idx].insert_extracted_sources([src_a]) imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin) idx = 1 imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) imgs[idx].insert_extracted_sources([src_a, src_b]) imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin) imgs[idx].update() runcats = columns_from_table('runningcatalog', where={'dataset':self.dataset.id}) self.assertEqual(len(runcats), 2) #Just a sanity check. skyassocs = columns_from_table('assocskyrgn', where={'skyrgn':imgs[idx]._data['skyrgn']}) self.assertEqual(len(skyassocs), 2)
def test_steady_source(self): """ Sanity check: Ensure we get no newsource table entries for a steady source. """ im_params = self.im_params steady_src = db_subs.MockSource( template_extractedsource=db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ), lightcurve=defaultdict(lambda: self.reliably_detectable_flux)) inserted_sources = [] for img_pars in im_params: image, _, forced_fits = insert_image_and_simulated_sources( self.dataset, img_pars, [steady_src], self.new_source_sigma_margin) #should not have any nulldetections self.assertEqual(len(forced_fits), 0) transients = get_sources_filtered_by_final_variability( dataset_id=self.dataset.id, **self.search_params) newsources = get_newsources_for_dataset(self.dataset.id) #or newsources, high variability sources self.assertEqual(len(transients), 0) self.assertEqual(len(newsources), 0)
def test_null_detection_business_as_usual(self): """ If we do not blindly extract a steady source due to increased RMS, then we expect a null-detection forced-fit to be triggered. However, if the source properties are steady, this should not result in the source being identified as transient. """ img0 = self.img_params[0] steady_src_flux = self.barely_detectable_flux steady_src = MockSource( example_extractedsource_tuple(ra=img0['centre_ra'], dec=img0['centre_decl']), lightcurve=defaultdict(lambda: steady_src_flux)) image, blind_xtr, forced_fits = insert_image_and_simulated_sources( self.dataset, self.img_params[0], [steady_src], self.new_source_sigma_margin) self.assertEqual(len(blind_xtr), 1) self.assertEqual(len(forced_fits), 0) image, blind_xtr, forced_fits = insert_image_and_simulated_sources( self.dataset, self.img_params[1], [steady_src], self.new_source_sigma_margin) self.assertEqual(len(blind_xtr), 0) self.assertEqual(len(forced_fits), 1) get_sources_filtered_by_final_variability(dataset_id=self.dataset.id, **self.search_params) transients = get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(transients), 0)
def test_only_first_epoch_source(self): """test_only_first_epoch_source - Pretend to extract a source only from the first image. - Run source association for each image, as we would in TraP. - Check the image source listing works - Check runcat and assocxtrsource are correct. """ first_epoch = True extracted_source_ids=[] for im in self.im_params: self.db_imgs.append( Image( data=im, dataset=self.dataset) ) last_img =self.db_imgs[-1] if first_epoch: last_img.insert_extracted_sources( [db_subs.example_extractedsource_tuple()],'blind') last_img.associate_extracted_sources(deRuiter_r, new_source_sigma_margin) #First, check the runcat has been updated correctly: running_cat = columns_from_table(table="runningcatalog", keywords=['datapoints'], where={"dataset":self.dataset.id}) self.assertEqual(len(running_cat), 1) self.assertEqual(running_cat[0]['datapoints'], 1) last_img.update() last_img.update_sources() img_xtrsrc_ids = [src.id for src in last_img.sources] # print "ImageID:", last_img.id # print "Imgs sources:", img_xtrsrc_ids if first_epoch: self.assertEqual(len(img_xtrsrc_ids),1) extracted_source_ids.extend(img_xtrsrc_ids) assocxtrsrcs_rows = columns_from_table(table="assocxtrsource", keywords=['runcat', 'xtrsrc' ], where={"xtrsrc":img_xtrsrc_ids[0]}) self.assertEqual(len(assocxtrsrcs_rows),1) self.assertEqual(assocxtrsrcs_rows[0]['xtrsrc'], img_xtrsrc_ids[0]) else: self.assertEqual(len(img_xtrsrc_ids),0) first_epoch=False #Assocxtrsources still ok after multiple images? self.assertEqual(len(extracted_source_ids),1) assocxtrsrcs_rows = columns_from_table(table="assocxtrsource", keywords=['runcat', 'xtrsrc' ], where={"xtrsrc":extracted_source_ids[0]}) self.assertEqual(len(assocxtrsrcs_rows),1) self.assertEqual(assocxtrsrcs_rows[0]['xtrsrc'], extracted_source_ids[0], "Runcat xtrsrc entry must match the only extracted source")
def test_single_fixed_source(self): """test_single_fixed_source - Pretend to extract the same source in each of a series of images. - Perform source association - Check the image source listing works - Check runcat, assocxtrsource. """ fixed_src_runcat_id = None for img_idx, im in enumerate(self.im_params): self.db_imgs.append( Image(data=im, dataset=self.dataset)) last_img = self.db_imgs[-1] insert_extracted_sources(last_img._id, [db_subs.example_extractedsource_tuple()],'blind') associate_extracted_sources(last_img._id, deRuiter_r, new_source_sigma_margin) running_cat = columns_from_table(table="runningcatalog", keywords=['id', 'datapoints'], where={"dataset":self.dataset.id}) self.assertEqual(len(running_cat), 1) self.assertEqual(running_cat[0]['datapoints'], img_idx+1) # Check runcat ID does not change for a steady single source if img_idx == 0: fixed_src_runcat_id = running_cat[0]['id'] self.assertIsNotNone(fixed_src_runcat_id, "No runcat id assigned to source") self.assertEqual(running_cat[0]['id'], fixed_src_runcat_id, "Multiple runcat ids for same fixed source") runcat_flux = columns_from_table(table="runningcatalog_flux", keywords=['f_datapoints'], where={"runcat":fixed_src_runcat_id}) self.assertEqual(len(runcat_flux),1) self.assertEqual(img_idx+1, runcat_flux[0]['f_datapoints']) last_img.update() last_img.update_sources() img_xtrsrc_ids = [src.id for src in last_img.sources] self.assertEqual(len(img_xtrsrc_ids), 1) #Get the association row for most recent extraction: assocxtrsrcs_rows = columns_from_table(table="assocxtrsource", keywords=['runcat', 'xtrsrc' ], where={"xtrsrc":img_xtrsrc_ids[0]}) # print "ImageID:", last_img.id # print "Imgs sources:", img_xtrsrc_ids # print "Assoc entries:", assocxtrsrcs_rows # print "First extracted source id:", ds_source_ids[0] # if len(assocxtrsrcs_rows): # print "Associated source:", assocxtrsrcs_rows[0]['xtrsrc'] self.assertEqual(len(assocxtrsrcs_rows),1, msg="No entries in assocxtrsrcs for image number "+str(img_idx)) self.assertEqual(assocxtrsrcs_rows[0]['runcat'], fixed_src_runcat_id, "Mismatched runcat id in assocxtrsrc table")
def TestDeRuiterCalculation(self): """Check all the unit conversions are correct""" dataset = DataSet(data={'description':"Assoc 1-to-1:" + self._testMethodName}) n_images = 2 im_params = db_subs.example_dbimage_datasets(n_images, centre_ra=10, centre_decl=0) #Note ra / ra_fit_err are in degrees. # ra_sys_err is in arcseconds, but we set it = 0 so doesn't matter. #ra_fit_err cannot be zero or we get div by zero errors. #Also, there is a hard limit on association radii: #currently this defaults to 0.03 degrees== 108 arcseconds src0 = db_subs.example_extractedsource_tuple(ra=10.00, dec=0.0, ra_fit_err=0.1, dec_fit_err=1.00, ra_sys_err=0.0, dec_sys_err=0.0) src1 = db_subs.example_extractedsource_tuple(ra=10.02, dec=0.0, ra_fit_err=0.1, dec_fit_err=1.00, ra_sys_err=0.0, dec_sys_err=0.0) src_list = [src0, src1] #NB dec_fit_err nonzero, but since delta_dec==0 this simplifies to: expected_DR_radius = math.sqrt((src1.ra - src0.ra) ** 2 / (src0.ra_fit_err ** 2 + src1.ra_fit_err ** 2)) # print "Expected DR", expected_DR_radius for idx in [0, 1]: image = tkp.db.Image(dataset=dataset, data=im_params[idx]) image.insert_extracted_sources([src_list[idx]]) #Peform very loose association since we just want to store DR value. associate_extracted_sources(image.id, deRuiter_r=100) runcat = columns_from_table('runningcatalog', ['id'], where={'dataset':dataset.id}) # print "***\nRESULTS:", runcat, "\n*****" self.assertEqual(len(runcat), 1) assoc = columns_from_table('assocxtrsource', ['r'], where={'runcat':runcat[0]['id']}) # print "Got assocs:", assoc self.assertEqual(len(assoc), 2) self.assertAlmostEqual(assoc[1]['r'], expected_DR_radius)
def test_rejected_initial_image(self): """ An image which is rejected should not be taken into account when deciding whether a patch of sky has been previously observed, and hence whether any detections in that area are (potential) transients. Here, we create a database with two images. The first (choronologically) is rejected; the second contains a source. That source should not be marked as a transient. """ dataset = tkp.db.DataSet(data={"description": "Trans:" + self._testMethodName}, database=tkp.db.Database()) # We use a dataset with two images # NB the routine in db_subs automatically increments time between # images. n_images = 2 db_imgs = [ tkp.db.Image(data=im_params, dataset=dataset) for im_params in db_subs.generate_timespaced_dbimages_data(n_images) ] # The first image is rejected for an arbitrary reason # (for the sake of argument, we use an unacceptable RMS). db_quality.reject( imageid=db_imgs[0].id, reason=db_quality.reject_reasons["rms"], comment=self._testMethodName, session=self.session, ) # Have to commit here: old DB code makes queries in a separate transaction. self.session.commit() # Since we rejected the first image, we only find a source in the # second. source = db_subs.example_extractedsource_tuple() insert_extracted_sources(db_imgs[1]._id, [source]) # Standard source association procedure etc. associate_extracted_sources(db_imgs[1].id, deRuiter_r=3.7, new_source_sigma_margin=3) # Our source should _not_ be a transient. That is, there should be no # entries in the newsource table for this dataset. cursor = tkp.db.execute( """\ SELECT t.id FROM newsource t, runningcatalog rc WHERE t.runcat = rc.id AND rc.dataset = %(ds_id)s """, {"ds_id": dataset.id}, ) self.assertEqual(cursor.rowcount, 0)
def test_rejected_initial_image(self): """ An image which is rejected should not be taken into account when deciding whether a patch of sky has been previously observed, and hence whether any detections in that area are (potential) transients. Here, we create a database with two images. The first (choronologically) is rejected; the second contains a source. That source should not be marked as a transient. """ dataset = tkp.db.DataSet( data={'description': "Trans:" + self._testMethodName}, database=tkp.db.Database()) # We use a dataset with two images # NB the routine in db_subs automatically increments time between # images. n_images = 2 db_imgs = [ tkp.db.Image(data=im_params, dataset=dataset) for im_params in db_subs.generate_timespaced_dbimages_data(n_images) ] # The first image is rejected for an arbitrary reason # (for the sake of argument, we use an unacceptable RMS). db_quality.reject(imageid=db_imgs[0].id, reason=db_quality.reject_reasons['rms'], comment=self._testMethodName, session=self.session) # Have to commit here: old DB code makes queries in a separate transaction. self.session.commit() # Since we rejected the first image, we only find a source in the # second. source = db_subs.example_extractedsource_tuple() insert_extracted_sources(db_imgs[1]._id, [source]) # Standard source association procedure etc. associate_extracted_sources(db_imgs[1].id, deRuiter_r=3.7, new_source_sigma_margin=3) # Our source should _not_ be a transient. That is, there should be no # entries in the newsource table for this dataset. cursor = tkp.db.execute( """\ SELECT t.id FROM newsource t, runningcatalog rc WHERE t.runcat = rc.id AND rc.dataset = %(ds_id)s """, {"ds_id": dataset.id}) self.assertEqual(cursor.rowcount, 0)
def test_new_skyregion_insertion(self): """Here we test the association logic executed upon insertion of a new skyregion. We expect that any pre-existing entries in the runningcatalog which lie within the field of view will be marked as 'within this region', through the presence of an entry in table ``assocskyrgn``. Conversely sources outside the FoV should not be marked as related. We begin with img0, with a source at centre. Then we add 2 more (empty) images/fields at varying positions. """ n_images = 6 im_params = db_subs.generate_timespaced_dbimages_data(n_images) src_in_img0 = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ) # First image image0 = tkp.db.Image(dataset=self.dataset, data=im_params[0]) insert_extracted_sources(image0._id, [src_in_img0]) associate_extracted_sources(image0._id, deRuiter_r, new_source_sigma_margin) image0.update() runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) self.assertEqual(len(runcats), 1) #Just a sanity check. ##Second, different *But overlapping* image: idx = 1 im_params[idx]['centre_decl'] += im_params[idx]['xtr_radius'] * 0.9 image1 = tkp.db.Image(dataset=self.dataset, data=im_params[idx]) image1.update() assocs = columns_from_table('assocskyrgn', where={'skyrgn': image1._data['skyrgn']}) self.assertEqual(len(assocs), 1) self.assertEqual(assocs[0]['runcat'], runcats[0]['id']) ##Third, different *and NOT overlapping* image: idx = 2 im_params[idx]['centre_decl'] += im_params[idx]['xtr_radius'] * 1.1 image2 = tkp.db.Image(dataset=self.dataset, data=im_params[idx]) image2.update() assocs = columns_from_table('assocskyrgn', where={'skyrgn': image2._data['skyrgn']}) self.assertEqual(len(assocs), 0)
def test_previous_image_id(self): img_params = self.img_params mock_sources = [] mock_sources.append( MockSource(example_extractedsource_tuple( ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl']), lightcurve={ img_params[-1]['taustart_ts']: self.always_detectable_flux })) mock_sources.append( MockSource(example_extractedsource_tuple( ra=img_params[0]['centre_ra'] + 1, dec=img_params[0]['centre_decl']), lightcurve={ img_params[-1]['taustart_ts']: self.always_detectable_flux })) image_ids = {} for img_idx in xrange(self.n_images): image, _, _ = insert_image_and_simulated_sources( self.dataset, self.img_params[img_idx], mock_sources, self.new_source_sigma_margin) image_ids[img_idx] = image.id newsources = get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(newsources), len(mock_sources)) newsource_properties = newsources[0] print "Image IDs:", image_ids self.assertEqual(newsource_properties['previous_limits_image'], image_ids[4])
def test_infinite(self): # Check that database insertion doesn't choke on infinite errors. dataset = DataSet(data={'description': 'example dataset'}, database=self.database) image = Image(dataset=dataset, data=db_subs.example_dbimage_data_dict()) # Inserting a standard example extractedsource should be fine extracted_source = db_subs.example_extractedsource_tuple() image.insert_extracted_sources([extracted_source]) inserted = columns_from_table('extractedsource', where={'image': image.id}) self.assertEqual(len(inserted), 1) # But if the source has infinite errors we drop it and log a warning extracted_source = db_subs.example_extractedsource_tuple( error_radius=float('inf'), peak_err=float('inf'), flux_err=float('inf')) # We will add a handler to the root logger which catches all log # output in a buffer. iostream = BytesIO() hdlr = logging.StreamHandler(iostream) logging.getLogger().addHandler(hdlr) image.insert_extracted_sources([extracted_source]) logging.getLogger().removeHandler(hdlr) # We want to be sure that the error has been appropriately logged. self.assertIn("Dropped source fit with infinite flux errors", iostream.getvalue()) inserted = columns_from_table('extractedsource', where={'image': image.id}) self.assertEqual(len(inserted), 1)
def test_previous_image_id(self): img_params = self.img_params mock_sources=[] mock_sources.append( MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl']), lightcurve={img_params[-1]['taustart_ts']: self.always_detectable_flux} )) mock_sources.append( MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra']+1, dec=img_params[0]['centre_decl']), lightcurve={img_params[-1]['taustart_ts']: self.always_detectable_flux} )) image_ids={} for img_idx in xrange(self.n_images): image, _,_ = insert_image_and_simulated_sources( self.dataset,self.img_params[img_idx],mock_sources, self.new_source_sigma_margin) image_ids[img_idx]=image.id newsources = get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(newsources),len(mock_sources)) newsource_properties = newsources[0] print "Image IDs:", image_ids self.assertEqual(newsource_properties['previous_limits_image'], image_ids[4])
def test_single_fixed_source(self): """test_single_fixed_source - Pretend to extract the same source in each of a series of images. - Perform source association - Check the image source listing works - Check runcat, assocxtrsource. """ imgs_loaded = 0 first_image = True fixed_src_runcat_id = None for im in self.im_params: self.db_imgs.append( Image( data=im, dataset=self.dataset) ) last_img =self.db_imgs[-1] last_img.insert_extracted_sources([db_subs.example_extractedsource_tuple()]) last_img.associate_extracted_sources(deRuiter_r=3.7) imgs_loaded+=1 running_cat = columns_from_table(table="runningcatalog", keywords=['id', 'datapoints'], where={"dataset":self.dataset.id}) self.assertEqual(len(running_cat), 1) self.assertEqual(running_cat[0]['datapoints'], imgs_loaded) if first_image: fixed_src_runcat_id = running_cat[0]['id'] self.assertIsNotNone(fixed_src_runcat_id, "No runcat id assigned to source") self.assertEqual(running_cat[0]['id'], fixed_src_runcat_id, "Multiple runcat ids for same fixed source") last_img.update() last_img.update_sources() img_xtrsrc_ids = [src.id for src in last_img.sources] self.assertEqual(len(img_xtrsrc_ids), 1) #Get the association row for most recent extraction: assocxtrsrcs_rows = columns_from_table(table="assocxtrsource", keywords=['runcat', 'xtrsrc' ], where={"xtrsrc":img_xtrsrc_ids[0]}) # print "ImageID:", last_img.id # print "Imgs sources:", img_xtrsrc_ids # print "Assoc entries:", assocxtrsrcs_rows # print "First extracted source id:", ds_source_ids[0] # if len(assocxtrsrcs_rows): # print "Associated source:", assocxtrsrcs_rows[0]['xtrsrc'] self.assertEqual(len(assocxtrsrcs_rows),1, msg="No entries in assocxtrsrcs for image number "+str(imgs_loaded)) self.assertEqual(assocxtrsrcs_rows[0]['runcat'], fixed_src_runcat_id, "Mismatched runcat id in assocxtrsrc table")
def test_rejected_initial_image(self): """ An image which is rejected should not be taken into account when deciding whether a patch of sky has been previously observed, and hence whether any detections in that area are (potential) transients. Here, we create a database with two images. The first (choronologically) is rejected; the second contains a source. That source should not be marked as a transient. """ dataset = tkp.db.DataSet( data={'description':"Trans:" + self._testMethodName}, database=tkp.db.Database() ) # We use a dataset with two images # NB the routine in db_subs automatically increments time between # images. n_images = 2 db_imgs = [ tkp.db.Image(data=im_params, dataset=dataset) for im_params in db_subs.example_dbimage_datasets(n_images) ] # The first image is rejected for an arbitrary reason # (for the sake of argument, we use an unacceptable RMS). tkp.db.quality.reject( db_imgs[0].id, tkp.db.quality.reason['rms'].id, self._testMethodName ) # Since we rejected the first image, we only find a source in the # second. source = db_subs.example_extractedsource_tuple() db_imgs[1].insert_extracted_sources([source]) # Standard source association procedure etc. associate_extracted_sources(db_imgs[1].id, 3.7) # Our source should _not_ be a transient. That is, there should be no # entries in the transient table for this dataset. cursor = tkp.db.execute("""\ SELECT t.id FROM transient t, runningcatalog rc WHERE t.runcat = rc.id AND rc.dataset = %(ds_id)s """, {"ds_id": dataset.id} ) self.assertEqual(cursor.rowcount, 0)
def test_new_skyregion_insertion(self): """Here we test the association logic executed upon insertion of a new skyregion. We expect that any pre-existing entries in the runningcatalog which lie within the field of view will be marked as 'within this region', through the presence of an entry in table ``assocskyrgn``. Conversely sources outside the FoV should not be marked as related. We begin with img0, with a source at centre. Then we add 2 more (empty) images/fields at varying positions. """ n_images = 6 im_params = db_subs.generate_timespaced_dbimages_data(n_images) src_in_img0 = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'],) ##First image: image0 = tkp.db.Image(dataset=self.dataset, data=im_params[0]) image0.insert_extracted_sources([src_in_img0]) image0.associate_extracted_sources(deRuiter_r, new_source_sigma_margin) image0.update() runcats = columns_from_table('runningcatalog', where={'dataset':self.dataset.id}) self.assertEqual(len(runcats), 1) #Just a sanity check. ##Second, different *But overlapping* image: idx = 1 im_params[idx]['centre_decl'] += im_params[idx]['xtr_radius'] * 0.9 image1 = tkp.db.Image(dataset=self.dataset, data=im_params[idx]) image1.update() assocs = columns_from_table('assocskyrgn', where={'skyrgn':image1._data['skyrgn']}) self.assertEqual(len(assocs), 1) self.assertEqual(assocs[0]['runcat'], runcats[0]['id']) ##Third, different *and NOT overlapping* image: idx = 2 im_params[idx]['centre_decl'] += im_params[idx]['xtr_radius'] * 1.1 image2 = tkp.db.Image(dataset=self.dataset, data=im_params[idx]) image2.update() assocs = columns_from_table('assocskyrgn', where={'skyrgn':image2._data['skyrgn']}) self.assertEqual(len(assocs), 0)
def setUp(self): """ create a fake transient. Taken from the transient test. :return: """ self.database = tkp.db.Database() self.dataset = tkp.db.DataSet( data={'description': "Augmented Runningcatalog test"}, database=self.database) self.n_images = 4 self.new_source_sigma_margin = 3 image_rms = 1e-3 detection_thresh = 10 self.search_params = {'eta_min': 1, 'v_min': 0.1} self.barely_detectable_flux = 1.01 * image_rms * detection_thresh self.reliably_detectable_flux = 1.01 * image_rms * ( detection_thresh + self.new_source_sigma_margin) # 1mJy image RMS, 10-sigma detection threshold = 10mJy threshold. test_specific_img_params = { 'rms_qc': image_rms, 'rms_min': image_rms, 'rms_max': image_rms, 'detection_thresh': detection_thresh } self.im_params = db_subs.generate_timespaced_dbimages_data( self.n_images, **test_specific_img_params) im_params = self.im_params src_tuple = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ) transient_src = db_subs.MockSource(template_extractedsource=src_tuple, lightcurve={ im_params[2]['taustart_ts']: self.reliably_detectable_flux }) for img_pars in im_params: db_subs.insert_image_and_simulated_sources( self.dataset, img_pars, [transient_src], self.new_source_sigma_margin)
def test_one2oneflux(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-1'}) n_images = 3 im_params = db_subs.generate_timespaced_dbimages_data(n_images) src_list = [] src = db_subs.example_extractedsource_tuple() src0 = src._replace(flux=2.0) src_list.append(src0) src1 = src._replace(flux=2.5) src_list.append(src1) src2 = src._replace(flux=2.4) src_list.append(src2) for idx, im in enumerate(im_params): image = tkp.db.Image(database=self.database, dataset=dataset, data=im) image.insert_extracted_sources([src_list[idx]]) associate_extracted_sources(image.id, deRuiter_r=3.717) query = """\ SELECT rf.avg_f_int FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat """ self.database.cursor.execute(query, {'dataset': dataset.id}) result = zip(*self.database.cursor.fetchall()) avg_f_int = result[0] self.assertEqual(len(avg_f_int), 1) py_metrics = db_subs.lightcurve_metrics(src_list) self.assertAlmostEqual(avg_f_int[0], py_metrics[-1]['avg_f_int']) runcat_id = columns_from_table('runningcatalog', where={'dataset': dataset.id}) self.assertEqual(len(runcat_id), 1) runcat_id = runcat_id[0]['id'] # Check evolution of variability indices db_metrics = db_queries.get_assoc_entries(self.database, runcat_id) self.assertEqual(len(db_metrics), n_images) # Compare the python- and db-calculated values for i in range(len(db_metrics)): for key in ('v_int', 'eta_int'): self.assertAlmostEqual(db_metrics[i][key], py_metrics[i][key])
def test_one2oneflux(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-1'}) n_images = 3 im_params = db_subs.generate_timespaced_dbimages_data(n_images) src_list = [] src = db_subs.example_extractedsource_tuple() src0 = src._replace(flux=2.0) src_list.append(src0) src1 = src._replace(flux=2.5) src_list.append(src1) src2 = src._replace(flux=2.4) src_list.append(src2) for idx, im in enumerate(im_params): image = tkp.db.Image(database=self.database, dataset=dataset, data=im) image.insert_extracted_sources([src_list[idx]]) associate_extracted_sources(image.id, deRuiter_r=3.717) query = """\ SELECT rf.avg_f_int FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat """ self.database.cursor.execute(query, {'dataset': dataset.id}) result = zip(*self.database.cursor.fetchall()) avg_f_int = result[0] self.assertEqual(len(avg_f_int), 1) py_metrics = db_subs.lightcurve_metrics(src_list) self.assertAlmostEqual(avg_f_int[0], py_metrics[-1]['avg_f_int']) runcat_id = columns_from_table('runningcatalog', where={'dataset':dataset.id}) self.assertEqual(len(runcat_id),1) runcat_id = runcat_id[0]['id'] # Check evolution of variability indices db_metrics = db_queries.get_assoc_entries(self.database, runcat_id) self.assertEqual(len(db_metrics), n_images) # Compare the python- and db-calculated values for i in range(len(db_metrics)): for key in ('v_int','eta_int'): self.assertAlmostEqual(db_metrics[i][key], py_metrics[i][key])
def test_probably_not_a_transient(self): """ ( flux1 < (rms_min0*(det0 + margin) ) --> Probably not a transient NB even if avg_source_flux == rms_min0*det0 + epsilon we might not detect it in the first image, due to noise fluctuations. So we provide the user-tunable marginal_detection_thresh, to ignore these 'noise' transients. """ img_params = self.img_params img0 = img_params[0] marginal_steady_src_flux = self.barely_detectable_flux # This time around, we just manually exclude the steady src from # the first image detections. marginal_steady_src = MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl'] ), lightcurve=defaultdict(lambda :marginal_steady_src_flux) ) #First, check that we've set up the test correctly: rms_min0 = img_params[0]['rms_min'] det0 = img_params[0]['detection_thresh'] self.assertTrue(marginal_steady_src_flux < rms_min0*(det0 + self.new_source_sigma_margin ) ) #Insert first image, no sources. tkp.db.Image(data=img_params[0],dataset=self.dataset) #Now set up second image. img1 = tkp.db.Image(data=img_params[1],dataset=self.dataset) xtr = marginal_steady_src.simulate_extraction(img1, extraction_type='blind') img1.insert_extracted_sources([xtr],'blind') img1.associate_extracted_sources(deRuiter_r, self.new_source_sigma_margin) newsources = get_newsources_for_dataset(self.dataset.id) #Should have no flagged new sources self.assertEqual(len(newsources),0)
def test_probably_not_a_transient(self): """ ( flux1 < (rms_min0*(det0 + margin) ) --> Probably not a transient NB even if avg_source_flux == rms_min0*det0 + epsilon we might not detect it in the first image, due to noise fluctuations. So we provide the user-tunable marginal_detection_thresh, to ignore these 'noise' transients. """ img_params = self.img_params img0 = img_params[0] marginal_steady_src_flux = self.barely_detectable_flux # This time around, we just manually exclude the steady src from # the first image detections. marginal_steady_src = MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl'] ), lightcurve=defaultdict(lambda :marginal_steady_src_flux) ) # First, check that we've set up the test correctly rms_min0 = img_params[0]['rms_min'] det0 = img_params[0]['detection_thresh'] self.assertTrue(marginal_steady_src_flux < rms_min0 * (det0 + self.new_source_sigma_margin)) # Insert first image, no sources. tkp.db.Image(data=img_params[0], dataset=self.dataset) # Now set up second image. img1 = tkp.db.Image(data=img_params[1], dataset=self.dataset) xtr = marginal_steady_src.simulate_extraction(img1, extraction_type='blind') insert_extracted_sources(img1._id, [xtr], 'blind') associate_extracted_sources(img1._id, deRuiter_r, self.new_source_sigma_margin) newsources = get_newsources_for_dataset(self.dataset.id) # Should have no flagged new sources self.assertEqual(len(newsources), 0)
def test_two_field_basic_case(self): """ Here we create 2 disjoint image fields, with one source at centre of each, and check that the second source inserted does not get flagged as newsource. """ n_images = 2 xtr_radius = 1.5 im_params = db_subs.generate_timespaced_dbimages_data( n_images, xtr_radius=xtr_radius) im_params[1]['centre_decl'] += xtr_radius * 2 + 0.5 imgs = [] for idx in range(len(im_params)): imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) for idx in range(len(im_params)): central_src = db_subs.example_extractedsource_tuple( ra=im_params[idx]['centre_ra'], dec=im_params[idx]['centre_decl']) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) imgs[idx].insert_extracted_sources([central_src]) imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin) runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) self.assertEqual(len(runcats), 2) #Just a sanity check. newsources_qry = """\ SELECT * FROM newsource tr ,runningcatalog rc WHERE rc.dataset = %s AND tr.runcat = rc.id """ self.database.cursor.execute(newsources_qry, (self.dataset.id, )) newsources = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(newsources), 0)
def setUp(self): """ create a fake transient. Taken from the transient test. :return: """ self.database = tkp.db.Database() self.dataset = tkp.db.DataSet(data={'description': "Augmented Runningcatalog test"}, database=self.database) self.n_images = 4 self.new_source_sigma_margin = 3 image_rms = 1e-3 detection_thresh = 10 self.search_params = {'eta_min': 1, 'v_min': 0.1} self.barely_detectable_flux = 1.01 * image_rms * detection_thresh self.reliably_detectable_flux = 1.01 * image_rms * (detection_thresh + self.new_source_sigma_margin) # 1mJy image RMS, 10-sigma detection threshold = 10mJy threshold. test_specific_img_params = {'rms_qc': image_rms, 'rms_min': image_rms, 'rms_max': image_rms, 'detection_thresh': detection_thresh} self.im_params = db_subs.generate_timespaced_dbimages_data( self.n_images, **test_specific_img_params) im_params = self.im_params src_tuple = db_subs.example_extractedsource_tuple(ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'],) transient_src = db_subs.MockSource( template_extractedsource=src_tuple, lightcurve={im_params[2]['taustart_ts']: self.reliably_detectable_flux} ) for img_pars in im_params: db_subs.insert_image_and_simulated_sources(self.dataset, img_pars, [transient_src], self.new_source_sigma_margin)
def test_one2one_flux_infinite_error(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-1'}) n_images = 3 im_params = db_subs.generate_timespaced_dbimages_data(n_images) src_list = [] src = db_subs.example_extractedsource_tuple() src0 = src._replace(flux=2.0) src_list.append(src0) src1 = src._replace(flux=2.5) src_list.append(src1) src2 = src._replace(flux=0.0001, flux_err=float('inf'), peak=0.0001, peak_err=float('inf')) src_list.append(src2) for idx, im in enumerate(im_params): image = tkp.db.Image(database=self.database, dataset=dataset, data=im) image.insert_extracted_sources([src_list[idx]]) associate_extracted_sources(image.id, deRuiter_r=3.717) query = """\ SELECT rf.avg_f_int ,rf.f_datapoints FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat """ cursor = tkp.db.execute(query, {'dataset': dataset.id}) results = db_subs.get_db_rows_as_dicts(cursor) self.assertEqual(len(results), 1) self.assertEqual(results[0]['f_datapoints'], 2) self.assertAlmostEqual(results[0]['avg_f_int'], (src0.flux + src1.flux) / 2.0)
def test_certain_transient(self): """ flux1 > (rms_max0*(det0+margin) --> Definite transient Nice and bright, must be new - mark it definite transient. """ img_params = self.img_params bright_transient = MockSource( example_extractedsource_tuple(ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl']), lightcurve={img_params[1]['taustart_ts']: self.always_detectable_flux} ) #First, check that we've set up the test correctly: rms_max0 = img_params[0]['rms_max'] det0 = img_params[0]['detection_thresh'] self.assertTrue(bright_transient.lightcurve.values()[0] > rms_max0*(det0 + self.new_source_sigma_margin ) ) for pars in self.img_params: img = tkp.db.Image(data=pars,dataset=self.dataset) xtr = bright_transient.simulate_extraction(img, extraction_type='blind') if xtr is not None: insert_extracted_sources(img._id, [xtr], 'blind') associate_extracted_sources(img._id, deRuiter_r, self.new_source_sigma_margin) newsources = get_newsources_for_dataset(self.dataset.id) #Should have one 'definite' transient self.assertEqual(len(newsources),1) self.assertTrue( newsources[0]['low_thresh_sigma'] > self.new_source_sigma_margin) self.assertTrue( newsources[0]['high_thresh_sigma'] > self.new_source_sigma_margin) self.assertTrue( newsources[0]['low_thresh_sigma'] > newsources[0]['high_thresh_sigma'])
def test_certain_transient(self): """ flux1 > (rms_max0*(det0+margin) --> Definite transient Nice and bright, must be new - mark it definite transient. """ img_params = self.img_params bright_transient = MockSource(example_extractedsource_tuple( ra=img_params[0]['centre_ra'], dec=img_params[0]['centre_decl']), lightcurve={ img_params[1]['taustart_ts']: self.always_detectable_flux }) #First, check that we've set up the test correctly: rms_max0 = img_params[0]['rms_max'] det0 = img_params[0]['detection_thresh'] self.assertTrue(bright_transient.lightcurve.values()[0] > rms_max0 * (det0 + self.new_source_sigma_margin)) for pars in self.img_params: img = tkp.db.Image(data=pars, dataset=self.dataset) xtr = bright_transient.simulate_extraction(img, extraction_type='blind') if xtr is not None: insert_extracted_sources(img._id, [xtr], 'blind') associate_extracted_sources(img._id, deRuiter_r, self.new_source_sigma_margin) newsources = get_newsources_for_dataset(self.dataset.id) #Should have one 'definite' transient self.assertEqual(len(newsources), 1) self.assertTrue( newsources[0]['low_thresh_sigma'] > self.new_source_sigma_margin) self.assertTrue( newsources[0]['high_thresh_sigma'] > self.new_source_sigma_margin) self.assertTrue(newsources[0]['low_thresh_sigma'] > newsources[0] ['high_thresh_sigma'])
def test_two_field_basic_case(self): """ Here we create 2 disjoint image fields, with one source at centre of each, and check that the second source inserted does not get flagged as newsource. """ n_images = 2 xtr_radius = 1.5 im_params = db_subs.generate_timespaced_dbimages_data(n_images, xtr_radius=xtr_radius) im_params[1]['centre_decl'] += xtr_radius * 2 + 0.5 imgs = [] for idx in range(len(im_params)): imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) for idx in range(len(im_params)): central_src = db_subs.example_extractedsource_tuple( ra=im_params[idx]['centre_ra'], dec=im_params[idx]['centre_decl']) imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx])) imgs[idx].insert_extracted_sources([central_src]) imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin) runcats = columns_from_table('runningcatalog', where={'dataset':self.dataset.id}) self.assertEqual(len(runcats), 2) #Just a sanity check. newsources_qry = """\ SELECT * FROM newsource tr ,runningcatalog rc WHERE rc.dataset = %s AND tr.runcat = rc.id """ self.database.cursor.execute(newsources_qry, (self.dataset.id,)) newsources = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(newsources), 0)
def TestCrossMeridian(self): """ A source is observed in two skyregions: one which crosses the meridian, and one which does not. We check that the associated source has the correct weighted mean RA. See also #4497. """ dataset = DataSet(data={'description': "Test:" + self._testMethodName}) im_list = [ db_subs.example_dbimage_datasets( n_images=1, centre_ra=0, centre_decl=0, xtr_radius=10 )[0], db_subs.example_dbimage_datasets( n_images=1, centre_ra=0, centre_decl=0, xtr_radius=10 )[0], db_subs.example_dbimage_datasets( n_images=1, centre_ra=15, centre_decl=0, xtr_radius=10 )[0], db_subs.example_dbimage_datasets( n_images=1, centre_ra=15, centre_decl=0, xtr_radius=10 )[0], ] source_ra = 7.5 src = db_subs.example_extractedsource_tuple(ra=source_ra, dec=0) for im in im_list: image = tkp.db.Image(dataset=dataset, data=im) image.insert_extracted_sources([src]) associate_extracted_sources(image.id, deRuiter_r=3.717) runcat = columns_from_table('runningcatalog', ['wm_ra'], where={'dataset': dataset.id} ) self.assertAlmostEqual(runcat[0]['wm_ra'], source_ra)
def test_one2one_flux_infinite_error(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-1'}) n_images = 3 im_params = db_subs.generate_timespaced_dbimages_data(n_images) src_list = [] src = db_subs.example_extractedsource_tuple() src0 = src._replace(flux=2.0) src_list.append(src0) src1 = src._replace(flux=2.5) src_list.append(src1) src2 = src._replace(flux=0.0001, flux_err=float('inf'), peak=0.0001, peak_err=float('inf')) src_list.append(src2) for idx, im in enumerate(im_params): image = tkp.db.Image(database=self.database, dataset=dataset, data=im) image.insert_extracted_sources([src_list[idx]]) associate_extracted_sources(image.id, deRuiter_r=3.717) query = """\ SELECT rf.avg_f_int ,rf.f_datapoints FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat """ cursor = tkp.db.execute(query, {'dataset': dataset.id}) results = db_subs.get_db_rows_as_dicts(cursor) self.assertEqual(len(results),1) self.assertEqual(results[0]['f_datapoints'],2) self.assertAlmostEqual(results[0]['avg_f_int'], (src0.flux + src1.flux)/2.0 )
def test_lightcurve(self): # make 4 images with different date images = [] image_datasets = db_subs.generate_timespaced_dbimages_data(n_images=4, taustart_ts= datetime.datetime(2010, 3, 3) ) for dset in image_datasets: image = Image(dataset=self.dataset, data=dset) images.append(image) # 3 sources per image, with different coordinates & flux data_list = [] for i in range(1, 4): data_list.append({ 'ra': 111.11 + i, 'decl': 11.11 + i, 'i_peak': 10. * i , 'i_peak_err': 0.1, }) # Insert the 3 sources in each image, while further varying the flux lightcurves_sorted_by_ra = [[],[],[]] for im_idx, image in enumerate(images): # Create the "source finding results" # Note that we reuse 'i_peak' as both peak & integrated flux. img_sources = [] for src_idx, data in enumerate(data_list): src = db_subs.example_extractedsource_tuple( ra = data['ra'],dec=data['decl'], peak=data['i_peak']* (1 + im_idx), flux = data['i_peak']* (1 + im_idx) ) lightcurves_sorted_by_ra[src_idx].append(src) img_sources.append(src) insert_extracted_sources(image._id, img_sources) associate_extracted_sources(image._id, deRuiter_r=3.7, new_source_sigma_margin=3) # updates the dataset and its set of images self.dataset.update() self.dataset.update_images() # update the images and their sets of sources for image in self.dataset.images: image.update() image.update_sources() # Now pick last image, select the first source (smallest RA) # and extract its light curve sources = self.dataset.images[-1].sources sources = sorted(sources, key=attrgetter('ra')) lightcurve = ligtcurve_func(sources[0]._id) # check if the sources are associated in all images self.assertEqual(len(images), len(lightcurve)) self.assertEqual(lightcurve[0][0], datetime.datetime(2010, 3, 3, 0, 0)) self.assertEqual(lightcurve[1][0], datetime.datetime(2010, 3, 4, 0, 0)) self.assertEqual(lightcurve[2][0], datetime.datetime(2010, 3, 5, 0, 0)) self.assertEqual(lightcurve[3][0], datetime.datetime(2010, 3, 6, 0, 0)) self.assertAlmostEqual(lightcurve[0][2], 10.) self.assertAlmostEqual(lightcurve[1][2], 20.) self.assertAlmostEqual(lightcurve[2][2], 30.) self.assertAlmostEqual(lightcurve[3][2], 40.) #Check the summary statistics (avg flux, etc) query = """\ SELECT rf.avg_f_int ,rf.avg_f_int_sq ,avg_weighted_f_int ,avg_f_int_weight FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat ORDER BY r.wm_ra """ self.database.cursor.execute(query, {'dataset': self.dataset.id}) runcat_flux_entries = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(runcat_flux_entries), len(lightcurves_sorted_by_ra)) for idx, flux_summary in enumerate(runcat_flux_entries): py_results = db_subs.lightcurve_metrics(lightcurves_sorted_by_ra[idx]) for key in flux_summary.keys(): self.assertAlmostEqual(flux_summary[key], py_results[-1][key]) #Now check the per-timestep statistics (variability indices) sorted_runcat_ids = columns_from_table('runningcatalog', where={'dataset':self.dataset.id}, order='wm_ra') sorted_runcat_ids = [entry['id'] for entry in sorted_runcat_ids] for idx, rcid in enumerate(sorted_runcat_ids): db_indices = db_queries.get_assoc_entries(self.database, rcid) py_indices = db_subs.lightcurve_metrics(lightcurves_sorted_by_ra[idx]) self.assertEqual(len(db_indices), len(py_indices)) for nstep in range(len(db_indices)): for key in ('v_int', 'eta_int', 'f_datapoints'): self.assertAlmostEqual(db_indices[nstep][key], py_indices[nstep][key], places=5)
def test_one2manyflux(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-n'}) n_images = 2 im_params = db_subs.generate_timespaced_dbimages_data(n_images) central_ra, central_dec = 123.1235, 10.55, position_offset_deg = 100. / 3600 #100 arcsec = 0.03 deg approx # image 1 image = tkp.db.Image(database=self.database, dataset=dataset, data=im_params[0]) imageid1 = image.id img1_srclist = [] # 1 source img1_srclist.append( db_subs.example_extractedsource_tuple( central_ra, central_dec, peak=1.5, peak_err=5e-1, flux=3.0, flux_err=5e-1, )) dbgen.insert_extracted_sources(imageid1, img1_srclist, 'blind') associate_extracted_sources(imageid1, deRuiter_r=3.717) # image 2 image = tkp.db.Image(database=self.database, dataset=dataset, data=im_params[1]) imageid2 = image.id img2_srclist = [] # 2 sources (both close to source 1, catching the 1-to-many case) img2_srclist.append( db_subs.example_extractedsource_tuple( central_ra, central_dec, peak=1.6, peak_err=5e-1, flux=3.2, flux_err=5e-1, )) img2_srclist.append( db_subs.example_extractedsource_tuple( central_ra + position_offset_deg, central_dec, peak=1.9, peak_err=5e-1, flux=3.4, flux_err=5e-1, )) dbgen.insert_extracted_sources(imageid2, img2_srclist, 'blind') associate_extracted_sources(imageid2, deRuiter_r=3.717) # Manually compose the lists of sources we expect to see associated # into runningcatalog entries: # NB img2_srclist[1] has larger RA value. lightcurves_sorted_by_ra = [] lightcurves_sorted_by_ra.append([img1_srclist[0], img2_srclist[0]]) lightcurves_sorted_by_ra.append([img1_srclist[0], img2_srclist[1]]) #Check the summary statistics (avg flux, etc) query = """\ SELECT rf.avg_f_int ,rf.avg_f_int_sq ,avg_weighted_f_int ,avg_f_int_weight FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat ORDER BY r.wm_ra """ self.database.cursor.execute(query, {'dataset': dataset.id}) runcat_flux_entries = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(runcat_flux_entries), 2) for idx, flux_summary in enumerate(runcat_flux_entries): py_results = db_subs.lightcurve_metrics( lightcurves_sorted_by_ra[idx]) for key in flux_summary.keys(): self.assertAlmostEqual(flux_summary[key], py_results[-1][key]) #Now check the per-timestep statistics (variability indices) sorted_runcat_ids = columns_from_table('runningcatalog', where={'dataset': dataset.id}, order='wm_ra') sorted_runcat_ids = [entry['id'] for entry in sorted_runcat_ids] for idx, rcid in enumerate(sorted_runcat_ids): db_indices = db_queries.get_assoc_entries(self.database, rcid) py_indices = db_subs.lightcurve_metrics( lightcurves_sorted_by_ra[idx]) self.assertEqual(len(db_indices), len(py_indices)) for nstep in range(len(db_indices)): for key in ('v_int', 'eta_int', 'f_datapoints'): self.assertAlmostEqual(db_indices[nstep][key], py_indices[nstep][key])
def test_single_fixed_source(self): """test_single_fixed_source - Pretend to extract the same source in each of a series of images. - Perform source association - Check the image source listing works - Check runcat, assocxtrsource. """ fixed_src_runcat_id = None for img_idx, im in enumerate(self.im_params): self.db_imgs.append(Image(data=im, dataset=self.dataset)) last_img = self.db_imgs[-1] last_img.insert_extracted_sources( [db_subs.example_extractedsource_tuple()], 'blind') last_img.associate_extracted_sources(deRuiter_r, new_source_sigma_margin) running_cat = columns_from_table( table="runningcatalog", keywords=['id', 'datapoints'], where={"dataset": self.dataset.id}) self.assertEqual(len(running_cat), 1) self.assertEqual(running_cat[0]['datapoints'], img_idx + 1) #Check runcat ID does not change for a steady single source if img_idx == 0: fixed_src_runcat_id = running_cat[0]['id'] self.assertIsNotNone(fixed_src_runcat_id, "No runcat id assigned to source") self.assertEqual(running_cat[0]['id'], fixed_src_runcat_id, "Multiple runcat ids for same fixed source") runcat_flux = columns_from_table( table="runningcatalog_flux", keywords=['f_datapoints'], where={"runcat": fixed_src_runcat_id}) self.assertEqual(len(runcat_flux), 1) self.assertEqual(img_idx + 1, runcat_flux[0]['f_datapoints']) last_img.update() last_img.update_sources() img_xtrsrc_ids = [src.id for src in last_img.sources] self.assertEqual(len(img_xtrsrc_ids), 1) #Get the association row for most recent extraction: assocxtrsrcs_rows = columns_from_table( table="assocxtrsource", keywords=['runcat', 'xtrsrc'], where={"xtrsrc": img_xtrsrc_ids[0]}) # print "ImageID:", last_img.id # print "Imgs sources:", img_xtrsrc_ids # print "Assoc entries:", assocxtrsrcs_rows # print "First extracted source id:", ds_source_ids[0] # if len(assocxtrsrcs_rows): # print "Associated source:", assocxtrsrcs_rows[0]['xtrsrc'] self.assertEqual( len(assocxtrsrcs_rows), 1, msg="No entries in assocxtrsrcs for image number " + str(img_idx)) self.assertEqual(assocxtrsrcs_rows[0]['runcat'], fixed_src_runcat_id, "Mismatched runcat id in assocxtrsrc table")
def test_many2manyflux_reduced_to_two_1to1(self): """ (See also assoc. test test_many2many_reduced_to_two_1to1 ) In this test-case we cross-associate between a rhombus of sources spread about a central position, east-west in the first image, north-south in the second. The latter, north-south pair are slightly offset towards positive RA and negative RA respectively. The result is that the candidate associations are pruned down to two one-to-one pairings.. """ dataset = tkp.db.DataSet(database=self.database, data={ 'description': 'flux test set: n-m, ' + self._testMethodName }) n_images = 2 im_params = db_subs.generate_timespaced_dbimages_data(n_images) centre_ra, centre_dec = 123., 10.5, offset_deg = 20 / 3600. #20 arcsec tiny_offset_deg = 1 / 3600. #1 arcsec eastern_src = db_subs.example_extractedsource_tuple( ra=centre_ra + offset_deg, dec=centre_dec, peak=1.5, peak_err=1e-1, flux=3.0, flux_err=1e-1, ) western_src = db_subs.example_extractedsource_tuple( ra=centre_ra - offset_deg, dec=centre_dec, peak=1.7, peak_err=1e-1, flux=3.2, flux_err=1e-1, ) northern_source = db_subs.example_extractedsource_tuple( ra=centre_ra + tiny_offset_deg, dec=centre_dec + offset_deg, peak=1.8, peak_err=1e-1, flux=3.3, flux_err=1e-1, ) southern_source = db_subs.example_extractedsource_tuple( ra=centre_ra - tiny_offset_deg, dec=centre_dec - offset_deg, peak=1.4, peak_err=1e-1, flux=2.9, flux_err=1e-1, ) # image 1 image1 = tkp.db.Image(database=self.database, dataset=dataset, data=im_params[0]) dbgen.insert_extracted_sources(image1.id, [eastern_src, western_src], 'blind') associate_extracted_sources(image1.id, deRuiter_r=3.717) # image 2 image2 = tkp.db.Image(database=self.database, dataset=dataset, data=im_params[1]) dbgen.insert_extracted_sources(image2.id, [northern_source, southern_source], 'blind') associate_extracted_sources(image2.id, deRuiter_r=3.717) # Manually compose the lists of sources we expect to see associated # into runningcatalog entries: # NB img1_srclist[1] has larger RA value. lightcurves_sorted_by_ra = [] lightcurves_sorted_by_ra.append([western_src, southern_source]) lightcurves_sorted_by_ra.append([eastern_src, northern_source]) #Check the summary statistics (avg flux, etc) query = """\ SELECT rf.avg_f_int ,rf.avg_f_int_sq ,avg_weighted_f_int ,avg_f_int_weight FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat ORDER BY r.wm_ra, r.wm_decl """ self.database.cursor.execute(query, {'dataset': dataset.id}) runcat_flux_entries = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(runcat_flux_entries), len(lightcurves_sorted_by_ra)) for idx, flux_summary in enumerate(runcat_flux_entries): py_results = db_subs.lightcurve_metrics( lightcurves_sorted_by_ra[idx]) for key in flux_summary.keys(): self.assertAlmostEqual(flux_summary[key], py_results[-1][key]) #Now check the per-timestep statistics (variability indices) sorted_runcat_ids = columns_from_table('runningcatalog', where={'dataset': dataset.id}, order='wm_ra,wm_decl') sorted_runcat_ids = [entry['id'] for entry in sorted_runcat_ids] for idx, rcid in enumerate(sorted_runcat_ids): db_indices = db_queries.get_assoc_entries(self.database, rcid) py_indices = db_subs.lightcurve_metrics( lightcurves_sorted_by_ra[idx]) self.assertEqual(len(db_indices), len(py_indices)) for nstep in range(len(db_indices)): for key in ('v_int', 'eta_int', 'f_datapoints'): self.assertAlmostEqual(db_indices[nstep][key], py_indices[nstep][key])
def test_nullDetection(self): data = {'description': "null detection:" + self._testMethodName} dataset = DataSet(data=data) # Three timesteps, each with 4 bands -> 12 images. taustart_tss = [ datetime.datetime(2013, 8, 1), datetime.datetime(2013, 9, 1), datetime.datetime(2013, 10, 1) ] freq_effs = [124, 149, 156, 185] freq_effs = [f * 1e6 for f in freq_effs] im_params = db_subs.generate_timespaced_dbimages_data( len(freq_effs) * len(taustart_tss)) timestamps = itertools.repeat(taustart_tss, len(freq_effs)) for im, freq, ts in zip( im_params, itertools.cycle(freq_effs), itertools.chain.from_iterable(zip(*timestamps))): im['freq_eff'] = freq im['taustart_ts'] = ts images = [] for im in im_params: image = tkp.db.Image(dataset=dataset, data=im) images.append(image) # Arbitrary parameters, except that they fall inside our image. src0 = db_subs.example_extractedsource_tuple(ra=122.5, dec=9.5) src1 = db_subs.example_extractedsource_tuple(ra=123.5, dec=10.5) # Group images in blocks of 4, corresponding to all frequency bands at # a given timestep. for images in zip(*(iter(images), ) * len(freq_effs)): for image in images: # The first source is only seen at timestep 0, band 0. # The second source is only seen at timestep 1, band 3. if (image.taustart_ts == taustart_tss[0] and image.freq_eff == freq_effs[0]): dbgen.insert_extracted_sources(image.id, [src0], 'blind') elif (image.taustart_ts == taustart_tss[1] and image.freq_eff == freq_effs[3]): dbgen.insert_extracted_sources(image.id, [src1], 'blind') else: pass for image in images: dbass.associate_extracted_sources(image.id, deRuiter_r=5.68, new_source_sigma_margin=3) nd_ids_pos = dbnd.get_nulldetections(image.id) # The null_detections are the positional inputs for the forced # fits, which on their turn return additional parameters, # e.g. from src0, src1 if image.taustart_ts == taustart_tss[0]: # There are no null detections at the first timestep self.assertEqual(len(nd_ids_pos), 0) elif image.taustart_ts == taustart_tss[1]: # src0 is a null detection at the second timestep self.assertEqual(len(nd_ids_pos), 1) dbgen.insert_extracted_sources( image.id, [src0], 'ff_nd', ff_runcat_ids=[ids for ids, ra, decl in nd_ids_pos]) else: # All other images have two null detections. self.assertEqual(len(nd_ids_pos), 2) dbgen.insert_extracted_sources( image.id, [src0, src1], 'ff_nd', ff_runcat_ids=[ids for ids, ra, decl in nd_ids_pos]) # And here we have to associate the null detections with the # runcat sources... dbnd.associate_nd(image.id) query = """\ SELECT id ,datapoints FROM runningcatalog r WHERE dataset = %(dataset_id)s ORDER BY datapoints """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # We should have two runningcatalog sources, with a datapoint for # every image in which the sources were seen. self.assertEqual(len(result), 2) query = """\ SELECT r.id ,rf.band ,rf.f_datapoints FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset_id)s AND rf.runcat = r.id ORDER BY r.id ,rf.band """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # We should have eight runningcatalog_flux entries, # one for every source in every band, i.e. 2 x 4. # The number of flux datapoints differ per source, though self.assertEqual(len(result), 8) # Source 1: inserted into timestep 0, band 0. # Force-fits in band 0 images at next timesteps, # so 1+2 for band 0. self.assertEqual(result[0][2], 3) # Source 1: inserted into timestep 0, band 0. # Force-fits in bands 1,2,3 images at next timesteps. # so 0+2 for bands 1,2,3. self.assertEqual(result[1][2], 2) self.assertEqual(result[2][2], 2) self.assertEqual(result[3][2], 2) # Source 2: inserted into timestep 1, band 3. # Force-fits in band 0,1,2 images at next timestep, # so 1 for band 0,1,2 self.assertEqual(result[4][2], 1) self.assertEqual(result[5][2], 1) self.assertEqual(result[6][2], 1) # Source 2: inserted into timestep 1, band 3. # Force-fit in band 3 image at next timestep, # so 1+1 for band 3 self.assertEqual(result[7][2], 2) # We should also have two lightcurves for both sources, # where source 1 has 3 datapoints in band0 (t1,t2,t3) # and 2 datapoints for the other three bands (t2,t3). # Source 2 has two datapoints for band3 (t2,t3) and # one for the other three bands (t3). query = """\ SELECT a.runcat ,a.xtrsrc ,a.type ,i.band ,i.taustart_ts FROM assocxtrsource a ,extractedsource x ,image i WHERE a.xtrsrc = x.id AND x.image = i.id AND i.dataset = %(dataset_id)s ORDER BY a.runcat ,i.band ,i.taustart_ts """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # 9 + 5 entries for source 1 and 2 resp. self.assertEqual(len(result), 14) # The individual light-curve datapoints # Source1: new at t1, band0 self.assertEqual(result[0][2], 4) self.assertEqual(result[0][4], taustart_tss[0]) # Source1: Forced fit at t2, same band self.assertEqual(result[1][2], 7) self.assertEqual(result[1][3], result[0][3]) self.assertEqual(result[1][4], taustart_tss[1]) # Source1: Forced fit at t3, same band self.assertEqual(result[2][2], 7) self.assertEqual(result[2][3], result[1][3]) self.assertEqual(result[2][4], taustart_tss[2]) # Source1: Forced fit at t2, band1 self.assertEqual(result[3][2], 7) self.assertTrue(result[3][3] > result[2][3]) self.assertEqual(result[3][4], taustart_tss[1]) # Source1: Forced fit at t3, band1 self.assertEqual(result[4][2], 7) self.assertEqual(result[4][3], result[3][3]) self.assertEqual(result[4][4], taustart_tss[2]) # Source1: Forced fit at t2, band2 self.assertEqual(result[5][2], 7) self.assertTrue(result[5][3] > result[4][3]) self.assertEqual(result[5][4], taustart_tss[1]) # Source1: Forced fit at t3, band2 self.assertEqual(result[6][2], 7) self.assertEqual(result[6][3], result[5][3]) self.assertEqual(result[6][4], taustart_tss[2]) # Source1: Forced fit at t2, band3 self.assertEqual(result[7][2], 7) self.assertTrue(result[7][3] > result[6][3]) self.assertEqual(result[7][4], taustart_tss[1]) # Source1: Forced fit at t3, band3 self.assertEqual(result[8][2], 7) self.assertEqual(result[8][3], result[7][3]) self.assertEqual(result[8][4], taustart_tss[2]) # Source2: Forced fit at t3, band0 self.assertEqual(result[9][2], 7) self.assertEqual(result[9][3], result[0][3]) self.assertEqual(result[9][4], taustart_tss[2]) # Source2: Forced fit at t3, band1 self.assertEqual(result[10][2], 7) self.assertTrue(result[10][3] > result[9][3]) self.assertEqual(result[10][4], taustart_tss[2]) # Source2: Forced fit at t3, band2 self.assertEqual(result[11][2], 7) self.assertTrue(result[11][3] > result[10][3]) self.assertEqual(result[11][4], taustart_tss[2]) # Source2: new at t2, band3 self.assertEqual(result[12][2], 4) self.assertTrue(result[12][3] > result[11][3]) self.assertEqual(result[12][4], taustart_tss[1]) # Source2: Forced fit at t3, band3 self.assertEqual(result[13][2], 7) self.assertEqual(result[13][3], result[12][3]) self.assertEqual(result[13][4], taustart_tss[2])
def test_m2m_nullDetection(self): """ This tests that two sources (close-by to be associated if they were detected at different timesteps) which are not seen in the next image and thus have forced fits, will have separate light curves. The postions are from the previous test. """ data = {'description': "null detection:" + self._testMethodName} dataset = DataSet(data=data) # Three timesteps, just 1 band -> 3 images. taustart_tss = [ datetime.datetime(2013, 8, 1), datetime.datetime(2013, 9, 1), datetime.datetime(2013, 10, 1) ] freq_effs = [124] freq_effs = [f * 1e6 for f in freq_effs] im_params = db_subs.generate_timespaced_dbimages_data( len(freq_effs) * len(taustart_tss)) timestamps = itertools.repeat(taustart_tss, len(freq_effs)) for im, freq, ts in zip( im_params, itertools.cycle(freq_effs), itertools.chain.from_iterable(zip(*timestamps))): im['freq_eff'] = freq im['taustart_ts'] = ts images = [] for im in im_params: image = tkp.db.Image(dataset=dataset, data=im) images.append(image) # Arbitrary parameters, except that they fall inside our image # and close together (see previous test) src0 = db_subs.example_extractedsource_tuple(ra=122.985, dec=10.5) src1 = db_subs.example_extractedsource_tuple(ra=123.015, dec=10.5) # Group images in blocks of 4, corresponding to all frequency bands at # a given timestep. for images in zip(*(iter(images), ) * len(freq_effs)): for image in images: # The sources are only seen at timestep 0 if (image.taustart_ts == taustart_tss[0]): dbgen.insert_extracted_sources(image.id, [src0, src1], 'blind') else: pass for image in images: dbass.associate_extracted_sources(image.id, deRuiter_r=5.68, new_source_sigma_margin=3) nd_ids_pos = dbnd.get_nulldetections(image.id) # The null_detections are the positional inputs for the forced # fits, which on their turn return additional parameters, # e.g. from src0, src1 if image.taustart_ts == taustart_tss[0]: # There are no null detections at the first timestep self.assertEqual(len(nd_ids_pos), 0) elif image.taustart_ts == taustart_tss[1]: # src0 & src1 are null detections at the second timestep self.assertEqual(len(nd_ids_pos), 2) dbgen.insert_extracted_sources( image.id, [src0, src1], 'ff_nd', ff_runcat_ids=[ids for ids, ra, decl in nd_ids_pos]) else: # All other images have two null detections. self.assertEqual(len(nd_ids_pos), 2) dbgen.insert_extracted_sources( image.id, [src0, src1], 'ff_nd', ff_runcat_ids=[ids for ids, ra, decl in nd_ids_pos]) # And here we have to associate the null detections with the # runcat sources... dbnd.associate_nd(image.id) query = """\ SELECT id ,datapoints FROM runningcatalog r WHERE dataset = %(dataset_id)s ORDER BY datapoints """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # We should have two runningcatalog sources, with a datapoint for # every image in which the sources were seen. self.assertEqual(len(result), 2) query = """\ SELECT r.id ,rf.band ,rf.f_datapoints FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset_id)s AND rf.runcat = r.id ORDER BY r.id ,rf.band """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # We should have two runningcatalog_flux entries, # one for every source in the band, i.e. 2 x 1. self.assertEqual(len(result), 2) # Source 0: inserted into timestep 0. # Force-fits in images at next timesteps, # so 1+2 for band 0. self.assertEqual(result[0][2], 3) # Source 1: inserted into timestep 0 # Force-fits in images at next timesteps. # so 1+2 for bands 0 self.assertEqual(result[1][2], 3) #self.assertEqual(result[2][2], 2) #self.assertEqual(result[3][2], 2) # We should also have two lightcurves for both sources, # where source 1 has 3 datapoints in band0 (t1,t2,t3). # Source 2 also has 3 datapoints for band0 (t1,t2,t3). query = """\ SELECT a.runcat ,a.xtrsrc ,a.type ,i.band ,i.taustart_ts FROM assocxtrsource a ,extractedsource x ,image i WHERE a.xtrsrc = x.id AND x.image = i.id AND i.dataset = %(dataset_id)s ORDER BY a.runcat ,i.band ,i.taustart_ts """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # 3 + 3 entries for source 0 and 1 resp. self.assertEqual(len(result), 6) # The individual light-curve datapoints # Source1: new at t1, band0 self.assertEqual(result[0][2], 4) self.assertEqual(result[0][4], taustart_tss[0]) # Source1: Forced fit at t2, same band self.assertEqual(result[1][2], 7) self.assertEqual(result[1][3], result[0][3]) self.assertEqual(result[1][4], taustart_tss[1]) # Source1: Forced fit at t3, same band self.assertEqual(result[2][2], 7) self.assertEqual(result[2][3], result[1][3]) self.assertEqual(result[2][4], taustart_tss[2]) # Source2: new at t1, band0 self.assertEqual(result[3][2], 4) self.assertEqual(result[3][3], result[1][3]) self.assertEqual(result[3][4], taustart_tss[0]) # Source2: Forced fit at t2, band0 self.assertEqual(result[4][2], 7) self.assertEqual(result[4][3], result[3][3]) self.assertEqual(result[4][4], taustart_tss[1]) # Source2: Forced fit at t3, band0 self.assertEqual(result[5][2], 7) self.assertEqual(result[5][3], result[4][3]) self.assertEqual(result[5][4], taustart_tss[2])
def test_lightsurface(self): images = [] # make 4 * 5 images with different frequencies and date for frequency in [80e6, 90e6, 100e6, 110e6, 120e6]: for day in [3, 4, 5, 6]: img_data = db_subs.example_dbimage_data_dict( taustart_ts=datetime.datetime(2010, 3, day), freq_eff=frequency) image = Image(dataset=self.dataset, data=img_data) images.append(image) # 3 sources per image, with different coordinates & flux data_list = [] for i in range(1, 4): data_list.append({ 'ra': 111.111 + i, 'decl': 11.11 + i, 'ra_fit_err': 0.01, 'decl_fit_err': 0.01, 'i_peak': 10. * i, 'i_peak_err': 0.1, 'error_radius': 10.0, 'fit_type': 1, # x=0.11, y=0.22, z=0.33, det_sigma=11.1, zone=i }) # Insert the 3 sources in each image, while further varying the flux for i, image in enumerate(images): # Create the "source finding results" sources = [] for data in data_list: source = db_subs.example_extractedsource_tuple( ra=data['ra'], dec=data['decl'], ra_fit_err=data['ra_fit_err'], dec_fit_err=data['decl_fit_err'], peak=data['i_peak'] * (1 + i), peak_err=data['i_peak_err'], flux=data['i_peak'] * (1 + i), flux_err=data['i_peak_err'], fit_type=data['fit_type']) sources.append(source) # Insert the sources insert_extracted_sources(image._id, sources) # Run the association for each list of source for an image associate_extracted_sources(image._id, deRuiter_r=3.7, new_source_sigma_margin=3) # updates the dataset and its set of images self.dataset.update() self.dataset.update_images() # update the images and their sets of sources for image in self.dataset.images: image.update() image.update_sources() # Now pick any image, select the first source (smallest RA) # and extract its light curve # TODO: aaarch this is so ugly. Because this a set we need to pop it. sources = self.dataset.images.pop().sources #sources = self.dataset.images[-1].sources sources = sorted(sources, key=attrgetter('ra')) extracted_source = sources[0].id lightcurve = tkp.db.general.lightcurve(extracted_source)
def test_new_runcat_insertion(self): """Here we test the association logic executed upon insertion of a new runningcatalog source. We add an empty image0, then proceed to image1, which is partially overlapping. We add one new overlapping source, and one source only in image1's skyrgn. Then we check that the back-associations to image0 are correct. """ n_images = 6 im_params = db_subs.generate_timespaced_dbimages_data(n_images) #We first create 2 overlapping images, #one above the other in dec by 1.0*xtr_radius idx = 0 image0 = tkp.db.Image(dataset=self.dataset, data=im_params[idx]) image0.update() #Bump up the centre of img1 to higher declination im_params[1]['centre_decl'] += im_params[1]['xtr_radius'] #We place one source half-way between the field centres (i.e. in both) src_in_imgs_0_1 = db_subs.example_extractedsource_tuple( ra=im_params[1]['centre_ra'], dec=im_params[1]['centre_decl'] - im_params[1]['xtr_radius'] * 0.5) #And one source only in field 1 src_in_img_1_only = db_subs.example_extractedsource_tuple( ra=im_params[1]['centre_ra'], dec=im_params[1]['centre_decl'] + im_params[1]['xtr_radius'] * 0.5) ##First insert new sources in img1 and check association to parent field: ## (This is always asserted without calculation, for efficiency) image1 = tkp.db.Image(dataset=self.dataset, data=im_params[1]) image1.insert_extracted_sources([src_in_imgs_0_1, src_in_img_1_only]) image1.associate_extracted_sources(deRuiter_r, new_source_sigma_margin) image1.update() runcats = columns_from_table('runningcatalog', where={'dataset': self.dataset.id}) #We now expect to see both runcat entries in the field of im1 im1_assocs = columns_from_table( 'assocskyrgn', where={'skyrgn': image1._data['skyrgn']}) self.assertEqual(len(im1_assocs), 2) runcat_ids = [r['id'] for r in runcats] for assoc in im1_assocs: self.assertTrue(assoc['runcat'] in runcat_ids) #The new sources are *also checked against previous regions* #Only expect one in field of im0 ( the first source). im0_assocs = columns_from_table( 'assocskyrgn', where={'skyrgn': image0._data['skyrgn']}) runcats_only_in_im0 = columns_from_table('runningcatalog', where={ 'dataset': self.dataset.id, 'wm_decl': 15 }) self.assertEqual(len(im0_assocs), 1) self.assertEqual(len(runcats_only_in_im0), 1) self.assertEqual(im0_assocs[0]['runcat'], runcats_only_in_im0[0]['id'])
def test_one2manyflux(self): dataset = tkp.db.DataSet(database=self.database, data={'description': 'flux test set: 1-n'}) n_images = 2 im_params = db_subs.generate_timespaced_dbimages_data(n_images) central_ra, central_dec = 123.1235, 10.55, position_offset_deg = 100./3600 #100 arcsec = 0.03 deg approx # image 1 image = tkp.db.Image(database=self.database, dataset=dataset, data=im_params[0]) imageid1 = image.id img1_srclist = [] # 1 source img1_srclist.append(db_subs.example_extractedsource_tuple(central_ra, central_dec, peak = 1.5, peak_err = 5e-1, flux = 3.0, flux_err = 5e-1, )) dbgen.insert_extracted_sources(imageid1, img1_srclist, 'blind') associate_extracted_sources(imageid1, deRuiter_r=3.717) # image 2 image = tkp.db.Image(database=self.database, dataset=dataset, data=im_params[1]) imageid2 = image.id img2_srclist = [] # 2 sources (both close to source 1, catching the 1-to-many case) img2_srclist.append(db_subs.example_extractedsource_tuple( central_ra, central_dec, peak = 1.6, peak_err = 5e-1, flux = 3.2, flux_err = 5e-1, )) img2_srclist.append(db_subs.example_extractedsource_tuple( central_ra + position_offset_deg, central_dec, peak = 1.9, peak_err = 5e-1, flux = 3.4, flux_err = 5e-1, )) dbgen.insert_extracted_sources(imageid2, img2_srclist, 'blind') associate_extracted_sources(imageid2, deRuiter_r=3.717) # Manually compose the lists of sources we expect to see associated # into runningcatalog entries: # NB img2_srclist[1] has larger RA value. lightcurves_sorted_by_ra =[] lightcurves_sorted_by_ra.append( [img1_srclist[0], img2_srclist[0]]) lightcurves_sorted_by_ra.append( [img1_srclist[0], img2_srclist[1]]) #Check the summary statistics (avg flux, etc) query = """\ SELECT rf.avg_f_int ,rf.avg_f_int_sq ,avg_weighted_f_int ,avg_f_int_weight FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset)s AND r.id = rf.runcat ORDER BY r.wm_ra """ self.database.cursor.execute(query, {'dataset': dataset.id}) runcat_flux_entries = get_db_rows_as_dicts(self.database.cursor) self.assertEqual(len(runcat_flux_entries), 2) for idx, flux_summary in enumerate(runcat_flux_entries): py_results = db_subs.lightcurve_metrics(lightcurves_sorted_by_ra[idx]) for key in flux_summary.keys(): self.assertAlmostEqual(flux_summary[key], py_results[-1][key]) #Now check the per-timestep statistics (variability indices) sorted_runcat_ids = columns_from_table('runningcatalog', where={'dataset':dataset.id}, order='wm_ra') sorted_runcat_ids = [entry['id'] for entry in sorted_runcat_ids] for idx, rcid in enumerate(sorted_runcat_ids): db_indices = db_queries.get_assoc_entries(self.database, rcid) py_indices = db_subs.lightcurve_metrics(lightcurves_sorted_by_ra[idx]) self.assertEqual(len(db_indices), len(py_indices)) for nstep in range(len(db_indices)): for key in ('v_int', 'eta_int', 'f_datapoints'): self.assertAlmostEqual(db_indices[nstep][key], py_indices[nstep][key])
def test_single_epoch_bright_transient(self): """A bright transient appears at field centre in one image.""" im_params = self.im_params transient_src = db_subs.MockSource( template_extractedsource=db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ), lightcurve={ im_params[2]['taustart_ts']: self.reliably_detectable_flux }) for img_pars in im_params[:3]: image, _, forced_fits = insert_image_and_simulated_sources( self.dataset, img_pars, [transient_src], self.new_source_sigma_margin) self.assertEqual(len(forced_fits), 0) # Check the number of detected transients transients = get_newsources_for_dataset(self.dataset.id) self.assertEqual(len(transients), 1) newsrc_properties = transients[0] # Check that the bands for the images are the same as the transient's band freq_bands = frequency_bands(self.dataset._id) self.assertEqual(len(freq_bands), 1) self.assertEqual(freq_bands[0], newsrc_properties['band']) # Sanity check that the runcat is correctly matched runcats = runcat_entries(self.dataset._id) self.assertEqual(len(runcats), 1) self.assertEqual(runcats[0]['runcat'], newsrc_properties['runcat_id']) # Since it is a single-epoch source, variability indices default to 0: self.assertEqual(newsrc_properties['v_int'], 0) self.assertEqual(newsrc_properties['eta_int'], 0) # Bright 'new-source' / single-epoch transient; should have high sigmas: self.assertTrue(newsrc_properties['low_thresh_sigma'] > self.new_source_sigma_margin) self.assertEqual(newsrc_properties['low_thresh_sigma'], newsrc_properties['high_thresh_sigma']) # Check the correct trigger xtrsrc was identified: self.assertEqual(newsrc_properties['taustart_ts'], transient_src.lightcurve.keys()[0]) # Ok, now add the last image and check that we get a correct forced-fit # request: image, _, forced_fits = insert_image_and_simulated_sources( self.dataset, im_params[3], [transient_src], self.new_source_sigma_margin) self.assertEqual(len(forced_fits), 1) transients = get_sources_filtered_by_final_variability( dataset_id=self.dataset.id, **self.search_params) self.assertEqual(len(transients), 1) transient_properties = transients[0] # And now we should have a non-zero variability value self.assertNotAlmostEqual(transient_properties['v_int'], 0) self.assertNotAlmostEqual(transient_properties['eta_int'], 0)
def test_1to1_nullDetection(self): """ This tests that the two sources are associated if they were detected at different timesteps. The positions are used in the next test as well. """ data = {'description': "null detection:" + self._testMethodName} dataset = DataSet(data=data) # Two timesteps, just 1 band -> 2 images. taustart_tss = [ datetime.datetime(2013, 8, 1), datetime.datetime(2013, 9, 1) ] freq_effs = [124] freq_effs = [f * 1e6 for f in freq_effs] im_params = db_subs.generate_timespaced_dbimages_data( len(freq_effs) * len(taustart_tss)) timestamps = itertools.repeat(taustart_tss, len(freq_effs)) for im, freq, ts in zip( im_params, itertools.cycle(freq_effs), itertools.chain.from_iterable(zip(*timestamps))): im['freq_eff'] = freq im['taustart_ts'] = ts images = [] for im in im_params: image = tkp.db.Image(dataset=dataset, data=im) images.append(image) # Arbitrary parameters, except that they fall inside our image # and close together (see next test) src0 = db_subs.example_extractedsource_tuple(ra=122.985, dec=10.5) src1 = db_subs.example_extractedsource_tuple(ra=123.015, dec=10.5) # Group images in blocks of 4, corresponding to all frequency bands at # a given timestep. for images in zip(*(iter(images), ) * len(freq_effs)): for image in images: # The sources are only seen at timestep 0 if (image.taustart_ts == taustart_tss[0]): dbgen.insert_extracted_sources(image.id, [src0], 'blind') elif (image.taustart_ts == taustart_tss[1]): dbgen.insert_extracted_sources(image.id, [src1], 'blind') else: pass for image in images: dbass.associate_extracted_sources(image.id, deRuiter_r=5.68, new_source_sigma_margin=3) query = """\ SELECT id ,datapoints FROM runningcatalog r WHERE dataset = %(dataset_id)s ORDER BY datapoints """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # We should have one runningcatalog sources, with two datapoints # for the images in which the sources were seen. self.assertEqual(len(result), 1) self.assertEqual(result[0][1], 2) query = """\ SELECT r.id ,rf.band ,rf.f_datapoints FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset_id)s AND rf.runcat = r.id ORDER BY r.id ,rf.band """ cursor = tkp.db.execute(query, {'dataset_id': dataset.id}) result = cursor.fetchall() # We should have one runningcatalog_flux entry, # where the source has two flux datapoints self.assertEqual(len(result), 1) self.assertEqual(result[0][2], 2)
def test_basic_case(self): im_params = self.im_params blind_src = db_subs.example_extractedsource_tuple( ra=im_params[0]['centre_ra'], dec=im_params[0]['centre_decl'], ) superimposed_mon_src = blind_src mon_src_in_field = blind_src._replace(ra=blind_src.ra + 0.001) # Simulate a source that does not get fit, for good measure: mon_src_out_of_field = blind_src._replace(ra=blind_src.ra + 90.) #Sorted by increasing RA: mon_srcs = [ superimposed_mon_src, mon_src_in_field, mon_src_out_of_field ] mon_posns = [(m.ra, m.dec) for m in mon_srcs] dbgen.insert_monitor_positions(self.dataset.id, mon_posns) images = [] for img_pars in self.im_params: img = tkp.db.Image(dataset=self.dataset, data=img_pars) dbgen.insert_extracted_sources(img.id, [blind_src], 'blind') associate_extracted_sources(img.id, deRuiter_r=5.68) nd_requests = get_nulldetections(img.id) self.assertEqual(len(nd_requests), 0) mon_requests = dbmon.get_monitor_entries(self.dataset.id) self.assertEqual(len(mon_requests), len(mon_srcs)) # mon requests is a list of tuples [(id,ra,decl)] # Ensure sorted by RA for cross-checking: mon_requests = sorted(mon_requests, key=lambda s: s[1]) for idx in range(len(mon_srcs)): self.assertAlmostEqual(mon_requests[idx][1], mon_srcs[idx].ra) self.assertAlmostEqual(mon_requests[idx][2], mon_srcs[idx].dec) #Insert fits for the in-field sources and then associate dbgen.insert_extracted_sources( img.id, [superimposed_mon_src, mon_src_in_field], 'ff_ms', ff_monitor_ids=[mon_requests[0][0], mon_requests[1][0]]) dbmon.associate_ms(img.id) query = """\ SELECT r.id ,r.mon_src ,rf.f_datapoints FROM runningcatalog r ,runningcatalog_flux rf WHERE r.dataset = %(dataset_id)s AND rf.runcat = r.id ORDER BY r.wm_ra ,r.mon_src """ cursor = tkp.db.execute(query, {'dataset_id': self.dataset.id}) runcat_flux = get_db_rows_as_dicts(cursor) self.assertEqual(len(runcat_flux), 3) # First entry (lowest RA, mon_src = False) is the regular one; self.assertEqual(runcat_flux[0]['mon_src'], False) # The higher RA source is the monitoring one self.assertEqual(runcat_flux[1]['mon_src'], True) self.assertEqual(runcat_flux[2]['mon_src'], True) for entry in runcat_flux: self.assertEqual(entry['f_datapoints'], len(self.im_params)) #Let's verify the association types blind_src_assocs = get_assoc_entries(self.dataset.database, runcat_flux[0]['id']) superimposed_mon_src_assocs = get_assoc_entries( self.dataset.database, runcat_flux[1]['id']) offset_mon_src_assocs = get_assoc_entries(self.dataset.database, runcat_flux[2]['id']) assoc_lists = [ blind_src_assocs, superimposed_mon_src_assocs, offset_mon_src_assocs ] for al in assoc_lists: self.assertEqual(len(al), 3) # The individual light-curve datapoints for the "normal" source # It was new at first timestep self.assertEqual(blind_src_assocs[0]['type'], 4) self.assertEqual(superimposed_mon_src_assocs[0]['type'], 8) self.assertEqual(offset_mon_src_assocs[0]['type'], 8) for idx, img_pars in enumerate(self.im_params): if idx != 0: self.assertEqual(blind_src_assocs[idx]['type'], 3) self.assertEqual(superimposed_mon_src_assocs[idx]['type'], 9) self.assertEqual(offset_mon_src_assocs[idx]['type'], 9) #And the extraction types: self.assertEqual(blind_src_assocs[idx]['extract_type'], 0) self.assertEqual(superimposed_mon_src_assocs[idx]['extract_type'], 2) self.assertEqual(offset_mon_src_assocs[idx]['extract_type'], 2) #Sanity check the timestamps while we're at it for al in assoc_lists: self.assertEqual(al[idx]['taustart_ts'], img_pars['taustart_ts'])
def test_only_first_epoch_source(self): """test_only_first_epoch_source - Pretend to extract a source only from the first image. - Run source association for each image, as we would in TraP. - Check the image source listing works - Check runcat and assocxtrsource are correct. """ first_epoch = True extracted_source_ids = [] for im in self.im_params: self.db_imgs.append(Image(data=im, dataset=self.dataset)) last_img = self.db_imgs[-1] if first_epoch: last_img.insert_extracted_sources( [db_subs.example_extractedsource_tuple()], 'blind') last_img.associate_extracted_sources(deRuiter_r, new_source_sigma_margin) #First, check the runcat has been updated correctly: running_cat = columns_from_table( table="runningcatalog", keywords=['datapoints'], where={"dataset": self.dataset.id}) self.assertEqual(len(running_cat), 1) self.assertEqual(running_cat[0]['datapoints'], 1) last_img.update() last_img.update_sources() img_xtrsrc_ids = [src.id for src in last_img.sources] # print "ImageID:", last_img.id # print "Imgs sources:", img_xtrsrc_ids if first_epoch: self.assertEqual(len(img_xtrsrc_ids), 1) extracted_source_ids.extend(img_xtrsrc_ids) assocxtrsrcs_rows = columns_from_table( table="assocxtrsource", keywords=['runcat', 'xtrsrc'], where={"xtrsrc": img_xtrsrc_ids[0]}) self.assertEqual(len(assocxtrsrcs_rows), 1) self.assertEqual(assocxtrsrcs_rows[0]['xtrsrc'], img_xtrsrc_ids[0]) else: self.assertEqual(len(img_xtrsrc_ids), 0) first_epoch = False #Assocxtrsources still ok after multiple images? self.assertEqual(len(extracted_source_ids), 1) assocxtrsrcs_rows = columns_from_table( table="assocxtrsource", keywords=['runcat', 'xtrsrc'], where={"xtrsrc": extracted_source_ids[0]}) self.assertEqual(len(assocxtrsrcs_rows), 1) self.assertEqual( assocxtrsrcs_rows[0]['xtrsrc'], extracted_source_ids[0], "Runcat xtrsrc entry must match the only extracted source")