def test_minimax_normalization_ones(): _tca = tca_plus.TCAPlus(test_set_X=pd.DataFrame(np.ones((5, 5))), test_set_domain=1, train_pool_X=pd.DataFrame(np.ones((5, 5))), train_pool_y=None, train_pool_domain=[0, 0, 0, 1, 1], Base_Classifier=None) print(_tca.minmax_normalization())
def test_distance(): _tca = tca_plus.TCAPlus(test_set_X=None, test_set_domain=None, train_pool_X=None, train_pool_y=None, train_pool_domain=None, Base_Classifier=None) dist_ = _tca.compute_distance_set(np.random.rand(4, 50)) print(_tca.compute_dcv(dist_, 4))
def test_dcv_sim_vector(): _tca = tca_plus.TCAPlus(test_set_X=None, test_set_domain=None, train_pool_X=None, train_pool_y=None, train_pool_domain=None, Base_Classifier=None) dist1 = _tca.compute_distance_set(np.random.rand(4, 50)) dist2 = _tca.compute_distance_set(np.random.rand(4, 50)) dcv_1, dcv_2 = _tca.compute_dcv(dist1, 4), _tca.compute_dcv(dist2, 4) print(_tca.compute_dist_similarity(dcv_1, dcv_2))
def test_full(): X_test = pd.DataFrame(np.random.rand(5, 5)) X_train = test_set_X = pd.DataFrame(np.ones((5, 5))) _tca = tca_plus.TCAPlus(X_test, test_set_domain=1, train_pool_X=X_train, train_pool_y=None, train_pool_domain=[0, 0, 0, 1, 1], Base_Classifier=None) dist1 = _tca.compute_distance_set(X_test) dist2 = _tca.compute_distance_set(X_train) dcv_1, dcv_2 = _tca.compute_dcv(dist1, 4), _tca.compute_dcv(dist2, 4) print(_tca.minmax_normalization())
def test_similarity(): _tca = tca_plus.TCAPlus(test_set_X=None, test_set_domain=None, train_pool_X=None, train_pool_y=None, train_pool_domain=None, Base_Classifier=None) assert _tca.compute_comp_similarity(905, 238) == tca_plus.SimLevel.MUCH_LESS assert _tca.compute_comp_similarity(60, 60) == tca_plus.SimLevel.SAME assert _tca.compute_comp_similarity(59, 60) == tca_plus.SimLevel.SAME assert _tca.compute_comp_similarity(100, 125) == tca_plus.SimLevel.SLIGHTLY_MORE assert _tca.compute_comp_similarity(100, 39) == tca_plus.SimLevel.MUCH_LESS
def test_normalization(): source_X = pd.DataFrame(np.random.rand(5, 5)) target_X = pd.DataFrame(np.random.rand(5, 5)) _tca = tca_plus.TCAPlus(test_set_X=None, test_set_domain=1, train_pool_X=None, train_pool_y=None, train_pool_domain=[0, 0, 0, 1, 1], Base_Classifier=None) #print(_tca.minmax_normalization(source_X, target_X)) print(_tca.zscore_normalization(source_X, target_X)) print(_tca.zscore_source_normalization(source_X, target_X)) print(_tca.zscore_target_normalization(source_X, target_X))
join="inner").reset_index(drop=True) #============================================================ train_pool_domain = [ 1 if e < len(X_train) else 0 for e in range(len(X_train_join)) ] except: print("Error while preparing data") continue #============================================================ #print("TCA+") try: _tca = tca_plus.TCAPlus( test_set_domain=0, train_pool_domain=train_pool_domain, test_set_X=X_test, train_pool_X=X_train_join, train_pool_y=y_train_join, Base_Classifier=LogisticRegression) confidence, y_p = _tca.train_filter_test() accuracy, precision, recall, f1_score = calculate_results( y_test, y_p) #Store results data = [ 'TCA+', accuracy, precision, recall, f1_score, source, target ] performance_data.append(data) except: print("Error while running TCA+")
test_set_y = test_set.loc[:, ["label"]].reset_index(drop=True) # gather all non-test indexes train_pool = all_instances.iloc[ all_instances.index.difference(test_set.index), ] train_pool_X = train_pool.loc[:, ["x_coord", "y_coord"]].reset_index(drop=True) train_pool_y = train_pool["label"].reset_index(drop=True) train_pool_domain = train_pool.domain_index # We don't have much training data, but we got some predictions with confidence levels! transfer_learners = [ tca_plus.TCAPlus(test_set_X=test_set_X, test_set_domain=test_set_domain, train_pool_X=train_pool_X, train_pool_y=train_pool_y, train_pool_domain=train_pool_domain, Base_Classifier=RandomForestClassifier, rand_seed=RAND_SEED), tca.TCA(test_set_X=test_set_X, test_set_domain=test_set_domain, train_pool_X=train_pool_X, train_pool_y=train_pool_y, train_pool_domain=train_pool_domain, Base_Classifier=RandomForestClassifier, rand_seed=RAND_SEED), tl_baseline.Source_Baseline(test_set_X=test_set_X, test_set_domain=test_set_domain, train_pool_X=train_pool_X, train_pool_y=train_pool_y, train_pool_domain=train_pool_domain,