def mkfluxstar(fluxfile, gratcode):
    import pdb
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.widgets import Cursor
    from astropy.io import fits
    from tmath.wombat.get_screen_size import get_screen_size
    from tmath.wombat.getmswave import getmswave
    from tmath.wombat.inputter_single import inputter_single
    from tmath.wombat.inputter import inputter
    from tmath.wombat.womscipyrebin import womscipyrebin
    from tmath.pydux.obs_extinction import obs_extinction
    from tmath.pydux.wave_telluric import wave_telluric
    from tmath.pydux.fitspl import fitspl
    from tmath.pydux.finalscaler import finalscaler
    from tmath.pydux.abcalc import abcalc
    from tmath.pydux.pacheck import pacheck

    screen_width, screen_height = get_screen_size()
    plt.ion()
    screenpos = '+{}+{}'.format(int(screen_width * 0.2),
                                int(screen_height * 0.05))
    fig = plt.figure()
    fig.canvas.manager.window.wm_geometry(screenpos)
    fig.canvas.set_window_title('Flux Star')
    fig.set_size_inches(18, 12)
    # turns off key stroke interaction
    fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)

    # this should bring the window to the top, but it doesn't
    wm = plt.get_current_fig_manager()
    #fig.canvas.manager.window.attributes('-topmost', 1)
    blah = wm.window.attributes('-topmost', 1)

    #plt.pause(0.2)
    #fig.canvas.manager.window.attributes('-topmost', 0)
    blah = wm.window.attributes('-topmost', 0)

    #extinction terms from Allen, 3rd edition
    extwave= [2400.,2600.,2800.,3000.,3200.,3400.,3600.,3800., \
              4000.,4500.,5000.,5500.,6000.,6500.,7000.,8000., \
              9000.,10000.,12000.,14000.]
    extvals=[68.0,89.0,36.0,4.5,1.30,0.84,0.68,0.55,0.46,0.31, \
             0.23,0.195,0.170,0.126,0.092,0.062,0.048,0.039, \
             0.028,0.021]

    fitsfile = fits.open(fluxfile)
    rawdata = fitsfile[0].data
    head = fitsfile[0].header
    num_apertures = rawdata.shape[1]

    wavearr = np.zeros((rawdata.shape[2], rawdata.shape[1]))
    objectname = head['OBJECT']
    airmass = float(head['AIRMASS'])
    exptime = float(head['EXPTIME'])
    head = pacheck(head)
    if (exptime < 1):
        exptime = 1.
    observat = head['OBSERVAT'].strip().lower()
    sitefactor = obs_extinction(observat)
    for i in range(0, num_apertures):
        wavearr[:, i] = getmswave(head, i)
    if (wavearr[-1, 0] < 3000):
        print('************************************************')
        print('Spectrum not wavelength calibrated---bailing out')
        print('************************************************')
        sys.exit(1)
    ap_choice = -1

    if (num_apertures != 1):
        axarr = fig.subplots(num_apertures, sharex=True)
        fig.subplots_adjust(hspace=0)
        for i in range(0, num_apertures):
            x = wavearr[:, i]
            y = rawdata[0, i, :]
            axarr[i].clear()

            plt.pause(0.01)
            axarr[i].plot(x, y, drawstyle='steps-mid')
            axarr[i].set_ylabel('Aperture {}'.format(i))
            plt.pause(0.01)
        while (ap_choice < 0) or (ap_choice > num_apertures - 1):
            ap_choice = inputter(
                'Which aperture do you want to use for the flux star? ', 'int',
                False)
        fig.clf()
    else:
        ap_choice = 0

    ymin, ymax = finalscaler(rawdata[0, ap_choice, :])
    fig.clf()
    x1 = wavearr[:, ap_choice]
    y1 = rawdata[1, ap_choice, :]
    y0 = rawdata[0, ap_choice, :]
    plt.plot(x1, y1, drawstyle='steps-mid', color='r')
    plt.plot(x1, y0, drawstyle='steps-mid', color='k')
    plt.pause(0.01)
    plt.ylim([ymin, ymax])
    plt.pause(0.01)
    print('\nPlotting optimal as black, normal as red')
    extract = inputter_single(
        'Do you want to use (n)ormal or (o)ptimal extraction? ', 'no')
    if (extract == 'o'):
        star = rawdata[0, ap_choice, :]
    else:
        star = rawdata[1, ap_choice, :]
    # fix IRAF weirdness where data can go negative in dispcor interpolation
    star[np.where(star < 0)] = 0.01
    wave = wavearr[:, ap_choice]
    extinction = womscipyrebin(extwave, extvals, wave)
    extfactor = np.exp(extinction * sitefactor * airmass)
    star = star * extfactor
    abcurve = abcalc(wave, objectname)
    wdata = 10.0**(0.4 * abcurve)
    fstar = star * wdata / exptime
    print('Now fit the continuum manually\n')
    plt.clf()
    ax = fig.add_subplot(111)
    cursor = Cursor(ax, useblit=True, color='k', linewidth=1)
    airlimit = 1.5
    splineresult = fitspl(wave, np.log10(fstar), (airmass > airlimit), fig)
    splineresult = 10**(splineresult)
    plt.cla()
    plt.plot(wave, splineresult, drawstyle='steps-mid')
    plt.pause(0.01)
    delkeylist=['WAT0_001', 'WAT1_001', 'WAT2_001', 'WAT0_002', \
                'WAT1_002', 'WAT2_002', 'WAT3_001', 'WAT2_003', \
                'CTYPE1', 'CTYPE2', 'CTYPE3', 'CD1_1', 'CD2_2', \
                'CD3_3', 'LTM1_1', 'LTM2_2', 'LTM3_3', 'WCSDIM']
    for k in delkeylist:
        try:
            head.remove(k)
        except KeyError:
            pass
    head.set('CRPIX1', 1)
    head.set('CRVAL1', wave[0])
    head.set('CDELT1', wave[1] - wave[0])
    head.set('CTYPE1', 'LINEAR')
    head.set('FLUXFILE', fluxfile)
    outfile = 'fluxstar' + gratcode + '.fits'
    print('Writing data to {}'.format(outfile))
    outhdu = fits.PrimaryHDU(splineresult)
    hdul = fits.HDUList([outhdu])
    hdul[0].header = head.copy()
    hdul.writeto(outfile, overwrite=True)
    print('mkfluxstar')
    print(fluxfile, gratcode)
    return
示例#2
0
def womcat(hop):
    """concatenate data with overlapping wavelength regions"""
    import numpy as np
    import logging
    import matplotlib.pyplot as plt
    from tmath.wombat.inputter import inputter
    from tmath.wombat.inputter_single import inputter_single
    from tmath.wombat.womget_element import womget_element
    from tmath.wombat.yesno import yesno
    from tmath.wombat.get_screen_size import get_screen_size
    from tmath.wombat.womwaverange2 import womwaverange2
    from tmath.wombat import HOPSIZE
    from matplotlib.widgets import Cursor
    plt.ion()
    screen_width, screen_height = get_screen_size()
    screenpos = '+{}+{}'.format(int(screen_width * 0.2),
                                int(screen_height * 0.05))
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cursor = Cursor(ax, useblit=True, color='k', linewidth=1)
    fig.canvas.manager.window.wm_geometry(screenpos)
    fig.canvas.set_window_title('Cat')
    fig.set_size_inches(9, 6)
    # turns off key stroke interaction
    fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)
    print("\nThis will combine blue and red pieces from two hoppers\n")
    hopnum1 = 0
    hopnum2 = 0
    while (hopnum1 < 1) or (hopnum1 > HOPSIZE):
        hopnum1 = inputter('Enter first hopper: ', 'int', False)
    while (hopnum2 < 1) or (hopnum2 > HOPSIZE):
        hopnum2 = inputter('Enter second hopper: ', 'int', False)
    if (hop[hopnum1].wave[0] > hop[hopnum2].wave[0]):
        hopnum1, hopnum2 = hopnum2, hopnum1
    wdelt1 = hop[hopnum1].wave[1] - hop[hopnum1].wave[0]
    wdelt2 = hop[hopnum2].wave[1] - hop[hopnum2].wave[0]
    # check if wavelength dispersion same
    if (abs(wdelt1 - wdelt2) > 0.00001):
        print('Spectra do not have same Angstrom/pixel')
        print('Blue side: {}'.format(wdelt1))
        print('Red side: {}'.format(wdelt2))
        return hop
    if hop[hopnum1].wave[-1] < hop[hopnum2].wave[0]:
        print('Spectra do not overlap\n')
        return hop
    print("\nOverlap range is {} to {}".format(hop[hopnum2].wave[0],
                                               hop[hopnum1].wave[-1]))
    print("\nPlotting blue side as blue, red side as red\n")

    waveblue = hop[hopnum1].wave.copy()
    fluxblue = hop[hopnum1].flux.copy()
    varblue = hop[hopnum1].var.copy()
    wavered = hop[hopnum2].wave.copy()
    fluxred = hop[hopnum2].flux.copy()
    varred = hop[hopnum2].var.copy()
    indexblue = womget_element(waveblue, wavered[0])
    indexred = womget_element(wavered, waveblue[-1])
    fluxcor = 1.0
    blue_mean = np.mean(fluxblue[indexblue:])
    red_mean = np.mean(fluxred[0:indexred + 1])
    if (blue_mean / red_mean < 0.8) or (blue_mean / red_mean > 1.2):
        fluxcor = blue_mean / red_mean
        print("Averages very different, scaling red to blue for plot")
        print("Red multiplied by {}".format(fluxcor))
    plt.cla()
    plt.plot(waveblue[indexblue:],
             fluxblue[indexblue:],
             drawstyle='steps-mid',
             color='b')
    plt.plot(wavered[0:indexred],
             fluxred[0:indexred] * fluxcor,
             drawstyle='steps-mid',
             color='r')
    plt.xlabel('Wavelength')
    plt.ylabel('Flux')
    plt.pause(0.01)
    print('Change scale?')
    answer = yesno('n')
    if (answer == 'y'):
        xmin_old, xmax_old = plt.xlim()
        ymin_old, ymax_old = plt.ylim()
        done = False
        while (not done):
            plt.xlim([xmin_old, xmax_old])
            plt.ylim([ymin_old, ymax_old])
            print('Click corners of box to change plot scale')
            newlims = plt.ginput(2, timeout=-1)
            xmin = newlims[0][0]
            ymin = newlims[0][1]
            xmax = newlims[1][0]
            ymax = newlims[1][1]
            plt.xlim([xmin, xmax])
            plt.ylim([ymin, ymax])
            print('Is this OK?')
            loopanswer = yesno('y')
            if (loopanswer == 'y'):
                done = True
    print('\nEnter method to select wavelength ranges\n')
    mode = inputter_single(
        'Enter (w)avelengths or mark with the (m)ouse? (w/m) ', 'wm')
    print('\nChoose end points of region to compute average\n')

    waveb, waver, mode = womwaverange2(waveblue[indexblue:],
                                       fluxblue[indexblue:],
                                       wavered[0:indexred],
                                       fluxred[0:indexred] * fluxcor, mode)
    indexblueb = womget_element(waveblue, waveb)
    indexbluer = womget_element(waveblue, waver)
    indexredb = womget_element(wavered, waveb)
    indexredr = womget_element(wavered, waver)
    mean_blue = np.mean(fluxblue[indexblueb:indexbluer + 1])
    mean_red = np.mean(fluxred[indexredb:indexredr + 1])
    print("\nAverage for {}:{}".format(waveb, waver))
    print("Blue side: {}".format(mean_blue))
    print("Red side:  {}\n".format(mean_red))
    brscale = inputter_single('Scale to blue or red (b/r)? ', 'br')
    if (brscale == 'b'):
        brscalefac = mean_blue / mean_red
        logging.info('Cat scaling to blue by {}'.format(brscalefac))
        fluxred = fluxred * brscalefac
        varred = varred * brscalefac**2
    else:
        brscalefac = mean_red / mean_blue
        logging.info('Cat scaling to red by {}'.format(brscalefac))
        fluxblue = fluxblue * brscalefac
        varblue = varblue * brscalefac**2

    # print("\nPlotting blue side as blue, red side as red\n")
    # plt.cla()
    # plt.plot(waveblue[indexblueb:indexbluer+1],fluxblue[indexblueb:indexbluer+1],drawstyle='steps-mid',color='b')
    # plt.plot(wavered[indexredb:indexredr+1],fluxred[indexredb:indexredr+1],drawstyle='steps-mid',color='r')
    # plt.xlabel('Wavelength')
    # plt.ylabel('Flux')
    # plt.pause(0.01)
    # print('Change scale?')
    # answer=yesno('n')
    # if (answer == 'y'):
    #     xmin_old,xmax_old=plt.xlim()
    #     ymin_old,ymax_old=plt.ylim()
    #     done=False
    #     while (not done):
    #         plt.xlim([xmin_old,xmax_old])
    #         plt.ylim([ymin_old,ymax_old])
    #         print('Click corners of box to change plot scale')
    #         newlims=plt.ginput(2,timeout=-1)
    #         xmin=newlims[0][0]
    #         ymin=newlims[0][1]
    #         xmax=newlims[1][0]
    #         ymax=newlims[1][1]
    #         plt.xlim([xmin,xmax])
    #         plt.ylim([ymin,ymax])
    #         print('Is this OK?')
    #         loopanswer=yesno('y')
    #         if (loopanswer == 'y'):
    #             done=True

    # print('\nChoose end points of region to compute average\n')

    # waveb,waver,mode=womwaverange2(waveblue[indexblueb:indexbluer+1],
    #                                fluxblue[indexblueb:indexbluer+1],
    #                                wavered[indexredb:indexredr+1],
    #                                fluxred[indexredb:indexredr+1],mode)
    # indexblueb=womget_element(waveblue,waveb)
    # indexbluer=womget_element(waveblue,waver)
    # indexredb=womget_element(wavered,waveb)
    # indexredr=womget_element(wavered,waver)
    # ewadd=inputter_single('Add overlap region (e)qually or with (w)eights (e/w)?','ew')
    # if (ewadd == 'e'):
    # overflux=(fluxblue[indexblueb:indexbluer+1]+fluxred[indexredb:indexredr+1])/2.
    # overvar=(varblue[indexblueb:indexbluer+1]+varred[indexredb:indexredr+1])

    #replacing with inverse variance weighted average
    overflux = np.average([
        fluxblue[indexblueb:indexbluer + 1], fluxred[indexredb:indexredr + 1]
    ],
                          weights=[
                              1. / varblue[indexblueb:indexbluer + 1],
                              1. / varred[indexredb:indexredr + 1]
                          ],
                          axis=0)
    overvar = np.sum(
        [varblue[indexblueb:indexbluer + 1], varred[indexredb:indexredr + 1]],
        axis=0)
    logging.info('Cat combined sides with inverse variance weighted average')
    # else:
    #     wei_done = False
    #     while (not wei_done):
    #         weiblue=inputter('Enter fractional weight for blue side: ','float',False)
    #         weired=inputter('Enter fractional weight for red side: ','float',False)
    #         if (np.abs((weiblue+weired)-1.0) > 0.000001):
    #             print('Weights do not add to 1.0')
    #         else:
    #             wei_done = True
    #     overflux=(fluxblue[indexblueb:indexbluer+1]*weiblue+
    #               fluxred[indexredb:indexredr+1]*weired)
    #     overvar=(varblue[indexblueb:indexbluer+1]*weiblue**2+
    #               varred[indexredb:indexredr+1]*weired**2)
    # logging.info('Cat adds blue side with weight {} and red side with weight {}'.format(weiblue, weired))
    newbluewave = waveblue[:indexblueb]
    newblueflux = fluxblue[:indexblueb]
    newbluevar = varblue[:indexblueb]
    overwave = waveblue[indexblueb:indexbluer + 1]
    newredwave = wavered[indexredr + 1:]
    newredflux = fluxred[indexredr + 1:]
    newredvar = varred[indexredr + 1:]
    newwave = np.concatenate([newbluewave, overwave, newredwave])
    newflux = np.concatenate([newblueflux, overflux, newredflux])
    newvar = np.concatenate([newbluevar, overvar, newredvar])
    logging.info('File {} and'.format(hop[hopnum1].obname))
    logging.info('File {} concatenated'.format(hop[hopnum2].obname))
    logging.info('over wavelength range {} to {}'.format(
        waveblue[indexblueb], waveblue[indexbluer]))
    plt.clf()
    axarr = fig.subplots(2)

    axarr[0].plot(overwave, overflux, drawstyle='steps-mid', color='k')
    axarr[0].plot(waveblue[indexblueb:indexbluer + 1],
                  fluxblue[indexblueb:indexbluer + 1],
                  drawstyle='steps-mid',
                  color='b')
    axarr[0].plot(wavered[indexredb:indexredr + 1],
                  fluxred[indexredb:indexredr + 1],
                  drawstyle='steps-mid',
                  color='r')
    axarr[0].set_title('Overlap region, with inputs and combination')
    axarr[1].set_ylabel('Flux')
    axarr[1].plot(newwave, newflux, drawstyle='steps-mid', color='k')
    axarr[1].plot(newwave[indexblueb:indexbluer + 1],
                  newflux[indexblueb:indexbluer + 1],
                  drawstyle='steps-mid',
                  color='r')
    plt.pause(0.01)
    hopout = 0
    while (hopout < 1) or (hopout > HOPSIZE):
        hopout = inputter('Enter hopper to store combined spectrum: ', 'int',
                          False)
    hop[hopout].wave = newwave
    hop[hopout].flux = newflux
    hop[hopout].var = newvar
    hop[hopout].obname = hop[hopnum1].obname
    hop[hopout].header = hop[hopnum1].header
    plt.close()
    #fig.clf()
    #plt.cla()
    return hop
示例#3
0
def mkbstar(bfile, gratcode):
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.widgets import Cursor
    from astropy.io import fits
    from tmath.wombat.get_screen_size import get_screen_size
    from tmath.wombat.getmswave import getmswave
    from tmath.wombat.inputter_single import inputter_single
    from tmath.wombat.inputter import inputter
    from tmath.wombat.yesno import yesno
    from tmath.pydux.obs_extinction import obs_extinction
    from tmath.pydux.wave_telluric import wave_telluric
    from tmath.pydux.fitspl import fitspl
    from tmath.pydux.bblo import bblo
    from tmath.pydux.finalscaler import finalscaler
    from tmath.pydux.pacheck import pacheck

    screen_width, screen_height = get_screen_size()
    plt.ion()
    screenpos = '+{}+{}'.format(int(screen_width * 0.2),
                                int(screen_height * 0.05))
    fig = plt.figure()

    fig.canvas.manager.window.wm_geometry(screenpos)
    fig.canvas.set_window_title('B Star')
    fig.set_size_inches(18, 12)
    # turns off key stroke interaction
    fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)

    # this should bring the window to the top, but it doesn't
    wm = plt.get_current_fig_manager()
    #fig.canvas.manager.window.attributes('-topmost', 1)
    blah = wm.window.attributes('-topmost', 1)

    #plt.pause(0.2)
    #fig.canvas.manager.window.attributes('-topmost', 0)
    blah = wm.window.attributes('-topmost', 0)

    fitsfile = fits.open(bfile)
    rawdata = fitsfile[0].data
    head = fitsfile[0].header
    num_apertures = rawdata.shape[1]
    wavearr = np.zeros((rawdata.shape[2], rawdata.shape[1]))
    objectname = head['OBJECT']
    airmass = float(head['AIRMASS'])
    exptime = float(head['EXPTIME'])

    if (exptime < 1):
        exptime = 1.
    head = pacheck(head)
    observat = head['OBSERVAT'].strip().lower()
    sitefactor = obs_extinction(observat)
    for i in range(0, num_apertures):
        wavearr[:, i] = getmswave(head, i)
    if (wavearr[-1, 0] < 3000):
        print('************************************************')
        print('Spectrum not wavelength calibrated---bailing out')
        print('************************************************')
        sys.exit(1)
    ap_choice = -1
    if (np.mean(rawdata[0, 0, :]) < 1e-7):
        rawdata = rawdata * 1e15
    # scale to rational numbers for fit (rational as in sane,
    # not opposed to irrational)
    if (num_apertures != 1):
        axarr = fig.subplots(num_apertures, sharex=True)
        fig.subplots_adjust(hspace=0)
        for i in range(0, num_apertures):
            x = wavearr[:, i]
            y = rawdata[0, i, :]
            axarr[i].clear()

            plt.pause(0.01)
            axarr[i].plot(x, y, drawstyle='steps-mid')
            axarr[i].set_ylabel('Aperture {}'.format(i))
            plt.pause(0.01)
        while (ap_choice < 0) or (ap_choice > num_apertures - 1):
            ap_choice = inputter(
                'Which aperture do you want to use for the B star? ', 'int',
                False)
        fig.clf()
    else:
        ap_choice = 0
    ymin, ymax = finalscaler(rawdata[0, ap_choice, :])
    fig.clf()
    x1 = wavearr[:, ap_choice]
    y1 = rawdata[1, ap_choice, :]
    y0 = rawdata[0, ap_choice, :]
    plt.plot(x1, y1, drawstyle='steps-mid', color='r')
    plt.plot(x1, y0, drawstyle='steps-mid', color='k')
    plt.pause(0.01)
    plt.ylim([ymin, ymax])
    plt.pause(0.01)
    print('\nPlotting optimal as black, normal as red')
    extract = inputter_single(
        'Do you want to use (n)ormal or (o)ptimal extraction? ', 'no')
    if (extract == 'o'):
        bstar = rawdata[0, ap_choice, :]
    else:
        bstar = rawdata[1, ap_choice, :]
    # fix IRAF weirdness where data can go negative in dispcor interpolation
    bstar[np.where(bstar < 0)] = 0.01
    wave = wavearr[:, ap_choice]
    print('\nAirmass: {}\n'.format(airmass))
    airlimit = 0.5
    while (airlimit < 1.0) or (airlimit > 10.):
        airlimit = inputter('Above what airmass is considered high? ', 'float',
                            False)

    print('\nNow fit the continuum manually\n')
    plt.clf()
    ax = fig.add_subplot(111)
    cursor = Cursor(ax, useblit=True, color='k', linewidth=1)
    airlimit = 1.5
    splineresult = fitspl(wave, np.log10(bstar), (airmass > airlimit), fig)
    splineresult = 10**(splineresult)
    plt.cla()
    plt.plot(wave, splineresult, drawstyle='steps-mid')
    plt.pause(0.01)
    bstar = bstar / splineresult
    if (airmass > airlimit):
        loc = wave_telluric(wave, 'high')
    else:
        loc = wave_telluric(wave, 'low')
    #invert loc and convert all good sections to np.nan so they won't plot
    loc = np.invert(loc)
    bstar[loc] = 1.0
    bstar[np.where(bstar > 1.)] = 1.0
    bstar[np.where(bstar <= 0.)] = 0.01
    plt.cla()
    plt.plot(wave, bstar, drawstyle='steps-mid')
    plt.pause(0.01)
    print('\nDo you want to blotch the B-star?')
    blotch = yesno('n')
    if (blotch == 'y'):
        bstar = bblo(wave, bstar, (airmass > airlimit), fig)
    delkeylist=['WAT0_001', 'WAT1_001', 'WAT2_001', 'WAT0_002', \
                'WAT1_002', 'WAT2_002', 'WAT3_001', 'WAT2_003', \
                'CTYPE1', 'CTYPE2', 'CTYPE3', 'CD1_1', 'CD2_2', \
                'CD3_3', 'LTM1_1', 'LTM2_2', 'LTM3_3', 'WCSDIM']
    for k in delkeylist:
        try:
            head.remove(k)
        except KeyError:
            pass
    plt.cla()
    plt.plot(wave, bstar, drawstyle='steps-mid')
    plt.pause(0.01)
    head.set('CRPIX1', 1)
    head.set('CRVAL1', wave[0])
    head.set('CDELT1', wave[1] - wave[0])
    head.set('CTYPE1', 'LINEAR')
    outfile = 'bstar' + gratcode + '.fits'
    print('Writing data to {}'.format(outfile))
    outhdu = fits.PrimaryHDU(bstar)
    hdul = fits.HDUList([outhdu])
    hdul[0].header = head.copy()
    hdul.writeto(outfile, overwrite=True)
    print('mkbstar')
    print(bfile, gratcode)
    return
示例#4
0
def final(objectlist, gratcode, secondord, gratcode2, user):
    import matplotlib.pyplot as plt
    from matplotlib import gridspec
    import numpy as np
    from datetime import datetime
    import os, pdb
    import inspect
    import glob
    import math
    from astropy.io import fits
    from astropy import units as u
    from astropy.coordinates import SkyCoord
    #    from astropy.time import Time
    from tmath.wombat.get_screen_size import get_screen_size
    from tmath.wombat.getmswave import getmswave
    from tmath.wombat.inputter_single import inputter_single
    from tmath.wombat.inputter import inputter
    from tmath.wombat.womcatfinal import womcatfinal
    from tmath.pydux.scipyrebinsky import scipyrebinsky
    from tmath.wombat.yesno import yesno
    from tmath.wombat.womashrebin import womashrebin
    from tmath.wombat.wominterpofluxconserving import interpo_flux_conserving
    from tmath.wombat.womspectres import spectres
    from tmath.pydux.getfitsfile import getfitsfile
    from tmath.pydux.pacheck import pacheck
    from tmath.pydux.jdcnv import jdcnv
    from tmath.pydux.baryvel import baryvel
    from tmath.pydux.finalscaler import finalscaler
    from tmath.pydux.envelope import envelope
    from tmath.pydux.congrid import congrid
    from tmath.pydux.xcor import xcor
    from tmath.pydux.telluric_remove import telluric_remove
    from tmath.pydux.waveparse import waveparse
    from tmath.pydux.parsehourangle import parsehourangle
    from tmath.pydux import RADEG
    plt.ion()

    screen_width, screen_height = get_screen_size()
    screenpos = '+{}+{}'.format(int(screen_width * 0.2),
                                int(screen_height * 0.05))
    fig = plt.figure()

    fig.canvas.manager.window.wm_geometry(screenpos)
    fig.canvas.set_window_title('Final Reductions')
    fig.set_size_inches(8, 5)
    # turns off key stroke interaction
    fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)

    # this should bring the window to the top, but it doesn't
    # wm=plt.get_current_fig_manager()
    #fig.canvas.manager.window.attributes('-topmost', 1)
    # blah=wm.window.attributes('-topmost', 1)

    #plt.pause(0.2)
    #fig.canvas.manager.window.attributes('-topmost', 0)
    # blah=wm.window.attributes('-topmost', 0)

    bstarfits = fits.open('bstar' + gratcode + '.fits')
    bstarstar = bstarfits[0].data
    bstarhead = bstarfits[0].header
    bstarwavezero = float(bstarhead['CRVAL1'])
    bstarwavedelt = float(bstarhead['CDELT1'])
    bstarwave = np.arange(len(bstarstar)) * bstarwavedelt + bstarwavezero
    bstarairmass = float(bstarhead['AIRMASS'])
    bstarname = bstarhead['OBJECT']
    try:
        bstarnum = int(bstarhead['OBSNUM'])
    except KeyError:
        bstarnum = 0
    if (secondord):
        bstarfits2 = fits.open('bstarstar' + gratcode2 + '.fits')
        bstarstar2 = bstarfits[0].data
        bstarhead2 = bstarfits[0].header
        bstarwavezero2 = float(bstarhead2['CRVAL1'])
        bstarwavedelt2 = float(bstarhead2['CDELT1'])
        bstarwave2 = np.arange(
            len(bstarstar2)) * bstarwavedelt2 + bstarwavezero2
        bstarairmass2 = float(bstarhead2['AIRMASS'])
        bstarname2 = bstarhead2['OBJECT']
        try:
            bstarnum2 = int(bstarhead2['OBSNUM'])
        except KeyError:
            bstarnum2 = 0
    observat = bstarhead['OBSERVAT'].strip().lower()
    #reduxdir=os.environ['PY_REDUX']
    reduxdir = inspect.getfile(xcor)
    reduxdir = reduxdir.rsplit('/', 1)[0] + '/'
    kecksky=['keck','gemini-north','gemini-n','gemini-south','gemini-s', \
             'soar','ctio','vlt','lco','lco-imacs','lapalma']
    licksky = ['lick', 'kpno', 'flwo', 'mmto', 'sso']
    if (observat in kecksky):
        mskyfile = reduxdir + 'kecksky.fits'
    elif (observat in licksky):
        mskyfile = reduxdir + 'licksky.fits'
    else:
        print('\nCannot find mastersky file and observatory unknown\n')
        mskyfile = getfitsfile('master sky', '.fits')
    print('Using {} as master sky'.format(mskyfile))
    mskyfits = fits.open(mskyfile)
    mskydata = mskyfits[0].data
    mskyhead = mskyfits[0].header
    mskywavezero = float(mskyhead['CRVAL1'])
    mskywavedelt = float(mskyhead['CDELT1'])
    mskywave = np.arange(len(mskydata)) * mskywavedelt + mskywavezero
    if (np.abs(np.mean(mskydata)) < 1e-7):
        mskydata = mskydata * 1e15
    print('\nHello {}\n'.format(user))
    lat_dict = {
        'keck': 19.8283,
        'gemini-north': 19.8238,
        'gemini-south': -30.228,
        'gemini-n': 19.8238,
        'gemini-s': -30.228,
        'soar': -30.228,
        'kpno': 31.9633,
        'lick': 37.3414,
        'palomar': 33.35611,
        'mcdonald': 30.6717,
        'flwo': 31.681,
        'mmto': 31.688,
        'sso': -31.2734,
        'vlt': -24.6254,
        'lco': -29.01,
        'lco-imacs': -29.01,
        'lapalma': 28.75833,
        'ctio': -30.16894
    }
    infile = open(objectlist, 'r')
    objname = ''
    secondtime = False
    seconddone = False
    for inputfile in infile:
        inputfile = inputfile.strip()
        if ('.fits' not in inputfile):
            inputfile = inputfile + '.fits'
        multifits = fits.open('c' + gratcode + inputfile)
        multispec = multifits[0].data
        mshead = multifits[0].header
        num_apertures = multispec.shape[1]
        num_bands = multispec.shape[0]
        wavearr = np.zeros((multispec.shape[2], multispec.shape[1]))
        if (secondord):
            multifits2 = fits.open('c' + gratcode2 + inputfile)
            multispec2 = multifits2[0].data
            mshead2 = multifits2[0].header
        pacheck(mshead)
        objectname = mshead['OBJECT']
        print('The object is: {}'.format(objectname))
        observat = mshead['OBSERVAT'].strip().lower()
        airmass = float(mshead['AIRMASS'])
        if (airmass < 1):
            airmass = 1.0
        stringra = mshead['RA']
        stringdec = mshead['DEC']
        geminilist = ['gemini-north', 'gemini-south', 'gemini-n', 'gemini-s']
        if (observat) in geminilist:
            ra = float(stringra)
            dec = float(stringdec)
        else:
            coords = SkyCoord(stringra, stringdec, unit=(u.hourangle, u.deg))
            ra = coords.ra.deg
            dec = coords.dec.deg
        ra = ra / RADEG
        dec = dec / RADEG
        haheader = mshead['HA']
        ha = parsehourangle(haheader)
        ha = ha * (360. / 24.) / RADEG

        if (observat in lat_dict):
            latitude = lat_dict[observat]
        else:
            print('Observatory Unknown!!!!!!!')
            latitude = 0.0
        latitude = latitude / RADEG
        # Get Julian date and Earth's velocity
        #epoch=float(mshead['EPOCH'])
        date = mshead['DATE-OBS'].strip()
        # get year,month,day from ISO Y2K format YYYY-MM-DDThh:mm:ss.ssss
        # the time following T is optional, so we get T from UTMIDDLE
        if (date[4] == '-'):
            year = int(date.split('-')[0])
            month = int(date.split('-')[1])
            day = int(date.split('-')[2].split('T')[0])
            printdate = '{}{:02d}{:02d}'.format(year, month, day)
        else:
            # Old date format DD/MM/YY
            year = int(date[6:8])
            month = int(date[3:5])
            day = int(date[0:2])
            # try to catch old format written after 2000
            # good until 2050, by which time no one should
            # be doing this
            if (year > 50):
                year = year + 1900
            else:
                year = year + 2000
            printdate = '{}{:02d}{:02d}'.format(year, month, day)
        try:
            ut = mshead['UTMIDDLE'].strip()
        except KeyError:
            ut = mshead['UT'].strip()
        if ('T' in ut):
            ut = ut.split('T')[1]
        # some UT/UTMIDDLE values are ISO format
        hour = int(ut.split(':')[0])
        minute = int(ut.split(':')[1])
        second = float(ut.split(':')[2])
        julian = jdcnv(year, month, day,
                       (hour + (minute / 60.) + (second / 3600.)))
        vh, vb = baryvel(julian)
        # Earth's velocity toward object
        v=vb[0]*np.cos(dec)*np.cos(ra) + vb[1]*np.cos(dec)*np.sin(ra) \
           + vb[2]*np.sin(dec)
        # Correct for earth's rotation.
        # Note that this isn't strictly correct because ha is set to
        # the beginning of the observation, while it really should be
        # the middle.  But this is a small difference and doesn't affect
        # the results in any way that we would notice...
        v = v - (0.4651 * np.cos(latitude) * np.sin(ha) * np.cos(dec))
        print(
            '\nThe velocity of the Earth toward the target is {} km/s'.format(
                v))
        print('\nThere are {} apertures in the spectrum.\n'.format(
            num_apertures))
        # clean up header
        """        delkeylist=['WAT0_001', 'WAT1_001', 'WAT2_001', 'WAT0_002', \
                'WAT1_002', 'WAT2_002', 'WAT3_001', 'WAT2_003', \
                'CTYPE1', 'CTYPE2', 'CTYPE3', 'CD1_1', 'CD2_2', \
                'CD3_3', 'LTM1_1', 'LTM2_2', 'LTM3_3', 'WCSDIM']
        for k in delkeylist:
            try:
                mshead.remove(k)
            except KeyError:
                pass """
        waveb = None
        waver = None
        bshift = None
        for i in range(0, num_apertures):
            # plt.close()
            # fig=plt.figure()
            # plt.plot(multispec[0,i,:], drawstyle='steps-mid',color='r')
            # plt.plot(multispec[1,i,:], drawstyle='steps-mid',color='k')
            # plt.xlim(1750,1900)
            # plt.pause(0.01)
            # print('Check plot')
            # answer=yesno('y')

            print('\nAperture {}:'.format(i + 1))
            wave = getmswave(mshead, i)
            print(wave[0], wave[-1])
            wdelt = wave[1] - wave[0]
            mean = np.mean(multispec[0, i, :])
            ymin, ymax = finalscaler(multispec[0, i, :])
            # plt.clf()
            gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1])
            ax0 = plt.subplot(gs[0])
            ax1 = plt.subplot(gs[1])
            fig.subplots_adjust(hspace=0)
            ax0.plot(wave,
                     multispec[1, i, :],
                     drawstyle='steps-mid',
                     color='r')
            ax0.plot(wave,
                     multispec[0, i, :],
                     drawstyle='steps-mid',
                     color='k')
            # ax0.plot(multispec[0,i,:],multispec[2,i,:],drawstyle='steps-mid',color='r')
            # ax0.plot(multispec[0,i,:],multispec[1,i,:],drawstyle='steps-mid',color='k')
            plt.pause(0.01)
            ax0.set_ylim((ymin, ymax))
            ax1.semilogy(wave,np.abs(multispec[1,i,:]-multispec[0,i,:])/mean, \
                         drawstyle='steps-mid',color='k')
            ax0.set_ylabel('Flux')
            ax1.set_ylabel('Log of fractional residuals')
            ax1.set_xlabel('Wavelength')
            plt.pause(0.01)
            print('\nPlotting optimal as black, normal as red\n')
            extract = inputter_single(
                'Do you want to use the (n)ormal or the (o)ptimal extraction? ',
                'no')
            if (extract == 'o'):
                object = multispec[0, i, :]
                extractcode = 'optimal'
                if (secondord):
                    object2 = multispec2[0, i, :]
            else:
                object = multispec[1, i, :]
                extractcode = 'normal'
                if (secondord):
                    object2 = multispec2[1, i, :]
            skyband = 2
            if (num_bands == 2):
                skyband = 1
            if (num_bands > 3):
                sigma = multispec[3, i, :]
            else:
                sigma = np.sqrt(multispec[skyband, i, :])
            if (np.abs(np.mean(object)) < 1e-7):
                print('\nScaling data up by 10^15\n')
                object = object * 1.e15
                sigma = sigma * 1.e15
            if (secondord):
                if (num_bands > 3):
                    sigma2 = multispec2[3, i, :]
                else:
                    sigma2 = np.sqrt(multispec2[skyband, i, :])
                    if (np.abs(np.mean(object)) < 1e-7):
                        object2 = object2 * 1.e15
                        sigma2 = sigma2 * 1.e15
            nandslist = ['gemini-n', 'gemini-s', 'lco-imacs']
            if (observat in nandslist):
                skyfile = inputfile.replace('tot', 'sky')
                skyfits = fits.open(skyfile)
                sky = skyfits[0].data[2, 0, :]
            else:
                sky = multispec[skyband, i, :]
            envelope_size = 25
            mx, mn = envelope(sky, envelope_size)
            skycont = congrid(mn, (len(sky), ), minusone=True)
            test_sky = sky
            sky = sky - skycont
            if (np.abs(np.mean(sky)) < 1.e-7):
                sky = sky * 1.e15
            print(len(mskywave), len(mskydata))
            msky = scipyrebinsky(mskywave, mskydata, wave)
            xfactor = 10
            maxlag = 200
            if 'kast' in mshead.get('VERSION', ''):
                shift = xcor(msky[50:-50], sky[50:-50], xfactor, maxlag)
            else:
                shift = xcor(msky, sky, xfactor, maxlag)
            angshift = shift * wdelt
            print('wdeltf', wdelt)
            print('The x-cor shift in Angstroms is {}'.format(angshift))
            wave = wave + angshift  #check to make sure signs are right
            skyshiftdone = False
            npixsky2 = len(sky) // 2
            msky_max = np.max(msky[npixsky2 - 1:])
            sky_max = np.max(sky[npixsky2 - 1:])
            scale = sky_max / msky_max

            plt.close()
            fig = plt.figure(figsize=[8, 5])
            fig.subplots_adjust(hspace=0)
            while (not skyshiftdone):
                axarr = fig.subplots(2)

                waveplus = wave - angshift

                if not secondtime:
                    axarr[0].plot(waveplus[0:npixsky2],scale*msky[0:npixsky2], \
                                  drawstyle='steps-mid',color='k')
                    axarr[0].plot(wave[0:npixsky2],sky[0:npixsky2], \
                                  drawstyle='steps-mid',color='r')
                    axarr[1].plot(waveplus[npixsky2-1:],scale*msky[npixsky2-1:], \
                                  drawstyle='steps-mid',color='k')
                    axarr[1].plot(wave[npixsky2-1:],sky[npixsky2-1:], \
                                  drawstyle='steps-mid',color='r')
                    plt.pause(0.01)
                    print('\nBlack spectrum = master sky')
                    print(
                        'Red spectrum   = object sky shifted to match master sky'
                    )
                    print('Is this ok?')
                    answer = yesno('y')
                    if (answer == 'n'):
                        wave = wave - angshift
                        angshift = inputter(
                            'Enter desired shift in Angstroms: ', 'float',
                            False)
                        wave = wave + angshift
                    else:
                        skyshiftdone = True
                else:
                    wave = wave + angshift
                    skyshiftdone = True

            plt.close()
            # B star removal
            bstarpass = bstarstar
            bobj, bsig, bangshift=telluric_remove(bstarwave,bstarpass, bstarairmass, wave, \
                                       object, airmass, sigma, object, shift=bshift)
            # bobj, bsig, bangshift=telluric_remove(bstarwave,bstarpass, bstarairmass, wave, \
            #                            test_sky, airmass, sigma, object)
            bshift = bangshift
            if (secondord):
                bobj2, bsig2, bangshift2 =telluric_remove(bstarwave2,bstarpass2, bstarairmass2, \
                                             wave, object2, airmass, sigma2)

            print('\nRemoving redshift due to motion of Earth...')
            z = -1 * v / 2.99792458e5
            wave = wave / (1 + z)
            # rebin
            fig = plt.figure()
            axarr = fig.subplots(1, 2)
            ymin, ymax = finalscaler(bobj[0:100])
            axarr[0].plot(wave[0:100], bobj[0:100], drawstyle='steps-mid')
            axarr[0].set_xlabel('Wavelength')
            axarr[0].set_ylabel('Flux')
            #axarr[0].set_ylim((ymin,ymax))
            if (secondtime):
                axarr[0].plot([wavesave0, wavesave0], [ymin, ymax], color='r')
            plt.pause(0.01)
            ymin, ymax = finalscaler(bobj[-100:])
            axarr[1].plot(wave[-100:], bobj[-100:], drawstyle='steps-mid')
            axarr[1].set_xlabel('Wavelength')
            axarr[1].set_ylabel('Flux')
            try:
                axarr[1].set_ylim((ymin, ymax))
            except ValueError:
                bobj_median = np.nanmedian(bobj)
                axarr[1].set_ylim((bobj_median / 10., bobj_median * 10.))
            if (secondtime):
                axarr[1].plot([wavesaven, wavesaven], [ymin, ymax], color='r')

                newdelt = 0.0
            plt.pause(0.01)
            print('\nCurrent A/pix is {}'.format(wave[1] - wave[0]))
            if (secondtime):
                print('\nPrevious resolution choice: {}'.format(deltsave))
            else:
                deltsave = 0.0
            newdelt = wave[1] - wave[0]
            # while (newdelt <= 0) or (newdelt > wave[-1]):
            #     print('Rebin to how many Angstroms per pixel? ')
            #     newdelt=inputter('         <CR> selects previous choice: ','float',True,deltsave)
            #     if (newdelt <= 0) or (newdelt > wave[-1]):
            #         print('Need positive resoution and smaller than the')
            #         print('entire spectrum.  Try again')
            print('\nCurrent range: {} {}'.format(wave[0], wave[-1]))
            if (secondtime):
                print('\nPrevious selection was {} {} (marked in red on plot)'.
                      format(wavesave0, wavesaven))
                print('\n<CR> selects previous choice\n')
            else:
                wavesave0 = 0.0
                wavesaven = 0.0
                print('Enter the new wavelength range desired: ')

            waveb, waver = waveparse(wave, wavesave0, wavesaven)
            newbin = (waver - waveb) / newdelt + 1.0  #should stay the same now
            # frac,whole=np.modf(newbin)
            # if (frac > 0.000001):
            # testwave=newdelt*whole+waveb
            # print('Closest match is: {} to {}'.format(waveb,testwave))
            # print('Would you like this wavelength range?')
            # answer=yesno('y')
            # if (answer == 'y'):
            #     waver=testwave

            wave_locs = np.where((wave > waveb) & (wave < waver))

            # deltsave=newdelt
            wavesave0 = waveb
            wavesaven = waver
            waverange = str(waveb) + ' ' + str(waver)
            secondtime = True
            # nwave=np.arange(0,whole)*newdelt + waveb
            # vartmp=bsig*bsig
            # olddeltvec=wave-np.roll(wave,1)
            # olddelt=np.mean(olddeltvec)

            # nwave = wave
            # finalobj = bobj
            # finalvar = bsig**2.
            # finalsig = bsig

            #NOT TESTED!!!
            nwave = wave[wave_locs]
            print(nwave[0], nwave[-1])
            finalobj = bobj[wave_locs]
            finalvar = bsig[wave_locs]**2.
            finalsig = bsig[wave_locs]

            # finalobj=womashrebin(wave,bobj,nwave)
            # finalvar=womashrebin(wave,vartmp,nwave)
            # finalsig=np.sqrt(finalvar)*np.sqrt(olddelt/newdelt)

            #Matt's interpolation algorithm. womashrebin is an unreadable monstrosity.
            # interp_data = interpo_flux_conserving(wave, bobj, 1./vartmp, waveb, waver, dw=newdelt, testing=False)

            # interp_wave = np.arange(math.ceil(wave[0])+1., math.floor(wave[-1])-1., dtype=float, step=newdelt)
            # spectres_data = spectres(interp_wave, wave, bobj, spec_errs=bsig)

            # trim_range = (interp_data[0] > waveb) & (interp_data[0] < waver)
            # nwave = interp_data[0][trim_range]
            # finalobj = interp_data[1][trim_range]
            # finalvar = 1./interp_data[2][trim_range]
            # finalsig = np.sqrt(finalvar)

            suffixes = {}
            suffixes['ap' + str(i + 1)] = ''
            if os.path.isfile('../HOST_AP_DATA.txt'):
                with open('../HOST_AP_DATA.txt') as host_ap_data:
                    h_lines = host_ap_data.readlines()
                    for l in h_lines:
                        suffixes[l.split()[0]] = '_' + l.split()[1]

            #gonna ignore the second order stuff for now
            if (secondord):
                vartmp2 = bsig2 * bsig2
                finalobj2 = womashrebin(wave, bobj2, nwave)
                finalvar2 = womashrebin(wave, vartmp2, nwave)
                finalsig2 = np.sqrt(finalvar2) * np.sqrt(olddelt / newdelt)
            if (secondord and not seconddone):
                finalobj, finalsig, wavebeg, waveend, brscale = secondcat(
                    nwave, finalobj, finalobj2, finalsig, finalsig2,
                    secondtime, wavebeg, waveend, brscale)
            seconddone = True
            ymin, ymax = finalscaler(finalobj)
            plt.close()
            fig = plt.figure()
            plt.plot(nwave, finalobj, drawstyle='steps-mid')
            # plt.plot(spectres_data[0],spectres_data[1],drawstyle='steps-mid', color='green')
            plt.xlabel('Wavelength')
            plt.ylabel('Flux')
            plt.title(objectname)
            plt.savefig(objectname + '-' + gratcode + '_ap' + str(i + 1) +
                        suffixes['ap' + str(i + 1)] + '.png')
            plt.show()

            outputdone = False
            while (not outputdone):
                print('\nThe file is: {}'.format(inputfile))
                print('The object is: {}'.format(objectname))
                print('The DATE-OBS is: {}'.format(date))
                print('The aperture is: {}'.format(i + 1))
                print('The previous name was: {}'.format(objname))
                print('\nEnter the object name for the final fits file: ')
                # objname=inputter('(UT date and .fits will be added): ','string',False)
                objname = objectname + '-' + gratcode
                fname = objname + '-' + printdate + '_ap' + str(
                    i + 1) + suffixes['ap' + str(i + 1)] + '.fits'
                sname = objname + '-' + printdate + '_ap' + str(
                    i + 1) + suffixes['ap' + str(i + 1)] + '-sigma.fits'
                outputdone = True
                if (os.path.isfile(fname)):
                    print('{} already exists!!!!'.format(fname))
                    print('Do you wish to overwrite it? ')
                    answer = yesno('y')
                    if (answer == 'y'):
                        outputdone = True
                else:
                    outputdone = True
            # add to header
            new_mshead = mshead.copy()
            new_mshead.set('CRPIX1', 1)
            new_mshead.set('CRVAL1', nwave[0])
            new_mshead.set('CDELT1', nwave[1] - nwave[0])
            new_mshead.set('CTYPE1', 'LINEAR')
            new_mshead.set('W_RANGE', waverange)
            new_mshead.set('BSTAR_Z', bstarairmass)
            new_mshead.set('BSTARNUM', bstarnum)
            new_mshead.set('BSTAROBJ', bstarname)
            new_mshead.set('BARYVEL', v)
            new_mshead.set('SKYSHIFT', angshift)
            new_mshead.set('ATMSHIFT', bangshift)
            new_mshead.set('EXTRACT', extractcode)
            new_mshead.set('REDUCER', user)
            new_mshead.set('RED_DATE',
                           str(datetime.now()).split()[0],
                           'EPOCH OF REDUCTION')
            new_mshead.set('OBJECT', objectname)
            # if (secondord):
            #     new_mshead.set('SECOND', 'yes',  'Second order correction attempted')
            #     new_mshead.set('COMBRANGE',combrange)
            #     new_mshead.set('BSTAR_Z2',bstarairmass2)
            #     new_mshead.set('BSTARNU2', bstarnum2)
            #     new_mshead.set('BSTAROB2', bstarname2)
            #     fluxairmass2=mshead2['FLX2_Z']
            #     fluxnum2=mshead2['FLX2_NUM']
            #     fluxname2=mshead2['FLX2_OBJ']
            #     new_mshead.set('FLX2_Z',fluxairmass2)
            #     new_mshead.set('FLX2_NUM', fluxnum2)
            #     new_mshead.set('FLX2_OBJ', fluxname2)
            outdata = np.zeros((len(finalobj), 2))
            outdata[:, 0] = finalobj.copy()
            outdata[:, 1] = finalsig.copy()
            outhdu = fits.PrimaryHDU(outdata)
            hdul = fits.HDUList([outhdu])
            mshead.set('NAXIS2', 2)
            hdul[0].header = new_mshead.copy()
            hdul.writeto(fname, overwrite=True)

            spectxt = objname + '-' + printdate + '_ap' + str(
                i + 1) + suffixes['ap' + str(i + 1)] + '.flm'
            spectxt = spectxt.strip()
            np.savetxt(spectxt,
                       np.transpose([nwave,
                                     finalobj.copy(),
                                     finalsig.copy()]))

            hdul.close()

            print('Do you wish to combine with another spectrum? ')
            answer = yesno('y')
            fname_comb = None
            if (answer == 'y'):
                plt.close()
                done = False
                while (not done):
                    files = glob.glob(objname.split('-')[0] + '*.fits')
                    print(files)
                    for f in files:
                        if objname not in f and ('red' in f or 'blue' in f
                                                 ) and '_ap' + str(i + 1) in f:
                            inputfile = f
                    inputfile = input(
                        'Name of fits file to be combined? [{}]: '.format(
                            inputfile)) or inputfile
                    print(inputfile)
                    inputfile = inputfile.strip()
                    if (inputfile == ''):
                        return hop
                    if ('.fits' not in inputfile):
                        inputfile = inputfile + '.fits'
                    try:
                        fitsdata = fits.open(inputfile)
                    except OSError:
                        print('File {} cannot be opened.'.format(inputfile))
                    else:
                        done = True

                crval1 = fitsdata[0].header['CRVAL1']
                try:
                    wdelt = fitsdata[0].header['CDELT1']
                except KeyError:
                    wdelt = 0.0000001
                if (wdelt < 0.000001):
                    wdelt = fitsdata[0].header['CD1_1']
                try:
                    objectname = fitsdata[0].header['OBJECT']
                    if (not isinstance(objectname, str)):
                        objectname = inputfile
                except KeyError:
                    objectname = inputfile

                data_new = fitsdata[0].data
                wave_new = np.arange(1, len(data_new) + 1) * wdelt + crval1
                if (len(data_new.shape) == 2):
                    var_new = data_new[:, 1]
                    var_new = var_new.astype(float)
                    var_new = var_new * var_new
                    flux_new = data_new[:, 0]
                    flux_new = flux_new.astype(float)
                else:
                    flux_new = data_new.astype(float)
                    var_new = np.ones(data_new.shape)

                if 'red' in inputfile:
                    wavecomb, fluxcomb, varcomb = womcatfinal(
                        [nwave, finalobj, finalvar],
                        [wave_new, flux_new, var_new])
                    nwave = wavecomb
                    finalobj = fluxcomb
                    finalsig = np.sqrt(varcomb)
                elif 'blue' in inputfile:
                    wavecomb, fluxcomb, varcomb = womcatfinal(
                        [wave_new, flux_new, var_new],
                        [nwave, finalobj, finalvar])
                    nwave = wavecomb
                    finalobj = fluxcomb
                    finalsig = np.sqrt(varcomb)
                else:
                    print(
                        "Please include 'blue' or 'red' in filename of spectrum to combine"
                    )

                plt.clf()
                plt.plot(nwave, finalobj, drawstyle='steps-mid')
                plt.xlabel('Wavelength')
                plt.ylabel('Flux')
                plt.title(objectname)
                plt.savefig(objectname + '_combined_ap' + str(i + 1) +
                            suffixes['ap' + str(i + 1)] + '.png')

                outputdone = False
                while (not outputdone):
                    print('\nThe file is: {}'.format(inputfile))
                    print('The object is: {}'.format(objectname))
                    print('The DATE-OBS is: {}'.format(date))
                    print('The aperture is: {}'.format(i + 1))
                    print('The previous name was: {}'.format(objname))
                    print('\nEnter the object name for the final fits file: ')
                    # objname=inputter('(UT date and .fits will be added): ','string',False)
                    objname = objectname + '-combined'
                    fname_comb = objname + '-' + printdate + '_ap' + str(
                        i + 1) + suffixes['ap' + str(i + 1)] + '.fits'
                    sname_comb = objname + '-' + printdate + '_ap' + str(
                        i + 1) + suffixes['ap' + str(i + 1)] + '-sigma.fits'
                    outputdone = True
                    if (os.path.isfile(fname)):
                        print('{} already exists!!!!'.format(fname))
                        print('Do you wish to overwrite it? ')
                        answer = yesno('y')
                        if (answer == 'y'):
                            outputdone = True
                    else:
                        outputdone = True
                # add to header
                mshead_combined = new_mshead.copy()
                mshead_combined.set('CRPIX1', 1)
                mshead_combined.set('CRVAL1', nwave[0])
                mshead_combined.set('CDELT1', nwave[1] - nwave[0])
                mshead_combined.set('CTYPE1', 'LINEAR')
                mshead_combined.set('W_RANGE', waverange)
                mshead_combined.set('BSTAR_Z', bstarairmass)
                mshead_combined.set('BSTARNUM', bstarnum)
                mshead_combined.set('BSTAROBJ', bstarname)
                mshead_combined.set('BARYVEL', v)
                mshead_combined.set('SKYSHIFT', angshift)
                mshead_combined.set('ATMSHIFT', bangshift)
                mshead_combined.set('EXTRACT', extractcode)
                mshead_combined.set('REDUCER', user)
                mshead_combined.set(
                    'RED_DATE',
                    datetime.now().strftime("%Y-%M-%d %I:%M%p"),
                    'EPOCH OF REDUCTION')
                mshead_combined.set('OBJECT', objectname)
                if (secondord):  #not implemented
                    mshead_combined.set('SECOND', 'yes',
                                        'Second order correction attempted')
                    mshead_combined.set('COMBRANGE', combrange)
                    mshead_combined.set('BSTAR_Z2', bstarairmass2)
                    mshead_combined.set('BSTARNU2', bstarnum2)
                    mshead_combined.set('BSTAROB2', bstarname2)
                    fluxairmass2 = mshead2['FLX2_Z']
                    fluxnum2 = mshead2['FLX2_NUM']
                    fluxname2 = mshead2['FLX2_OBJ']
                    mshead_combined.set('FLX2_Z', fluxairmass2)
                    mshead_combined.set('FLX2_NUM', fluxnum2)
                    mshead_combined.set('FLX2_OBJ', fluxname2)
                outdata = np.zeros((len(finalobj), 2))
                outdata[:, 0] = finalobj.copy()
                outdata[:, 1] = finalsig.copy()
                outhdu = fits.PrimaryHDU(outdata)
                hdul = fits.HDUList([outhdu])
                mshead_combined.set('NAXIS2', 2)
                hdul[0].header = mshead_combined.copy()
                hdul.writeto(fname_comb, overwrite=True)
                hdul.close()
                spectxt = objname + '-' + printdate + '_ap' + str(
                    i + 1) + suffixes['ap' + str(i + 1)] + '.flm'
                spectxt = spectxt.strip()
                np.savetxt(
                    spectxt,
                    np.transpose([nwave,
                                  finalobj.copy(),
                                  finalsig.copy()]))

            is_final = input('Is this a final reduction? [y]/n: ') or 'y'
            if is_final:
                if not os.path.isdir('../../final_reductions/'):
                    os.mkdir('../../final_reductions/')
                os.system('cp ' + fname + ' ' + '../../final_reductions/' +
                          fname)
                if fname_comb:
                    os.system('cp ' + fname_comb + ' ' +
                              '../../final_reductions/' + fname_comb)
        print('final')
        print(objectlist, gratcode, secondord, gratcode2)
        plt.close()
    return