示例#1
0
    def initFromConfig(self, cfg, sectionKey):
        super(ConvLayerParams, self).initFromConfig(cfg, sectionKey)

        self._inputDim = readCfgIntNoneListParam(cfg, sectionKey, 'inputDim',
                                                 self._inputDim)
        self._nFilters = readCfgIntParam(cfg, sectionKey, 'nFilters',
                                         self._nFilters)
        self._filterDim = readCfgIntNoneListParam(cfg, sectionKey, 'filterDim',
                                                  self._filterDim)
        #self._filter_shape = filter_shape
        #self._image_shape = image_shape
        #self._outputDim = readCfgIntNoneListParam(cfg,sectionKey,'outputDim',self._outputDim)
        self._wInitMode = readCfgIntParam(cfg, sectionKey, 'wInitMode',
                                          self._wInitMode)
        self._wInitOrthogonal = readCfgBooleanParam(cfg, sectionKey,
                                                    'wInitOrthogonal',
                                                    self._wInitOrthogonal)
        self.update()
示例#2
0
 def initFromConfig(self, cfg, sectionKey):
     super(PoolLayerParams, self).initFromConfig(cfg, sectionKey)
     self._inputDim = readCfgIntNoneListParam(cfg, sectionKey, 'inputDim',
                                              self._inputDim)
     self._poolType = readCfgIntParam(cfg, sectionKey, 'poolType',
                                      self._poolType)
     self._poolsize = readCfgIntNoneListParam(cfg, sectionKey, 'poolsize',
                                              self._poolsize)
     self.update()
示例#3
0
    def initFromConfig(self, cfg, sectionKey):
        super(ConvPoolLayerParams, self).initFromConfig(cfg, sectionKey)

        self._inputDim = readCfgIntNoneListParam(cfg, sectionKey, 'inputDim',
                                                 self._inputDim)
        self._nFilters = readCfgIntParam(cfg, sectionKey, 'nFilters',
                                         self._nFilters)
        self._filterDim = readCfgIntNoneListParam(cfg, sectionKey, 'filterDim',
                                                  self._filterDim)
        self._wInitMode = readCfgIntParam(cfg, sectionKey, 'wInitMode',
                                          self._wInitMode)
        self._wInitOrthogonal = readCfgBooleanParam(cfg, sectionKey,
                                                    'wInitOrthogonal',
                                                    self._wInitOrthogonal)
        self._poolType = readCfgIntParam(cfg, sectionKey, 'poolType',
                                         self._poolType)
        self._poolsize = readCfgIntNoneListParam(cfg, sectionKey, 'poolsize',
                                                 self._poolsize)
        self.update()
示例#4
0
 def initFromConfig(self,cfg,sectionKey):
     super(CatLayerParams,self).initFromConfig(cfg,sectionKey)
     self._inputDim = readCfgIntNoneListParam(cfg,sectionKey,'inputDim',self._inputDim)
     self._axis = readCfgIntParam(cfg,sectionKey,'axis',self._axis)
     self.update()
示例#5
0
 def initFromConfig(self,cfg,sectionKey):
     super(HiddenLayerParams,self).initFromConfig(cfg,sectionKey)
     self._nOutputs = readCfgIntParam(cfg,sectionKey,'outputDim',self._nOutputs)
     self.update()
示例#6
0
def linemod_test_main(fileName=None, cfg=None):

    theano.config.exception_verbosity = 'high'

    if fileName is None:
        g = glob.glob('../data/results/tmp/*_descrNet.pkl')
        #g = glob.glob('../data/results/cuda03_tmp/*_descrNet.pkl')
        fileName = sorted(g)[-1]

    if os.path.isdir(fileName):
        g = glob.glob('{}/*_descrNet.pkl'.format(fileName))
        fileName = sorted(g)[-1]

    outFNBase = fileName[:-len("descrNet.pkl")] + 'test'
    print("outFNBase {}".format(outFNBase))

    showPlots = readCfgIntParam(cfg, 'misc', 'showPlots', default=1) > 0

    ######## load net
    trainRes = loadTrainResultsPickle(fileName)
    descrNet = trainRes[0]
    cfg = trainRes[2]
    descrNetTrainerParams = trainRes[3]
    #

    imgsPklFileName = readCfgParam(cfg, 'input', 'imgsPklFileName', default="")
    trainSetPklFileName = readCfgParam(cfg,
                                       'train',
                                       'trainSetPklFileName',
                                       default="")
    valSetPklFileName = readCfgParam(cfg,
                                     'train',
                                     'valSetPklFileName',
                                     default="")

    #-------------
    inputDim = descrNet.cfgParams._inputDim
    #if len(inputDim) > 1 and len(inputDim[0]) > 1:
    if isinstance(inputDim[0], collections.Iterable):
        inputMode = 3  # IMG/DPT
        inputSize = inputDim[0][2]

        # check
        heights = [idim[2] for idim in inputDim]
        widths = [idim[3] for idim in inputDim]
        assert all([w == inputSize for w in widths]) and all(
            [h == inputSize
             for h in heights]), "can only handle quadratic inputs"
    else:
        nChan = inputDim[1]
        if nChan == 1:
            inputMode = 0  # DPT
        elif nChan == 3:
            inputMode = 1  # IMG
        elif nChan == 4:
            inputMode = 2  # IMG + DPT
        else:
            raise ValueError(
                "Unknown input mode: #channels = {}".format(nChan))
        inputSize = inputDim[2]

    print("inputMode = {}".format(inputMode))
    print("inputSize = {}".format(inputSize))

    print("num weight is descrNet: {}".format(descrNet.getNumWeights()))
    print("    total: {}".format(
        numpy.sum([numpy.prod(ws) for ws in descrNet.getNumWeights()])))

    ######## prepare test data

    #lmDataBasepath = '/home/wohlhart/work/data/linemod/'
    lmDataBasepath = readCfgParam(cfg,
                                  'paths',
                                  'lmDataBase',
                                  default='/home/wohlhart/work/data/linemod/')

    seqNamesStr = readCfgParam(cfg, 'input', 'objs', default="")
    seqNames = map(str.strip, seqNamesStr.split(","))
    zRotInvStr = readCfgParam(cfg, 'input', 'zRotInv', default=[])
    zRotInv = list(eval(zRotInvStr))

    print "trainset: {}".format(trainSetPklFileName)
    print "images: {}".format(imgsPklFileName)

    ###############################################################################################
    # create test set from test seq that was stored by main_linemod_realandsynth
    #   which did the split of the linemod data into train and test
    print("Loading images from pkl ... ")
    # LOAD from pkl
    pklload_start_time = time.clock()
    with open(imgsPklFileName, 'rb') as f:
        _, _, testSeqs = cPickle.load(f)
    f.close()
    pklload_end_time = time.clock()

    print('Loading took %.1fs' % ((pklload_end_time - pklload_start_time)))

    #     patch0 = testSeqs['cat'].data[52]
    #     print("fn {}".format(patch0.frame.filename))
    #     print("cn {}".format(patch0.frame.className))
    #     cv2.imshow("cat52",patch0.dpt/2.+1.)
    #     cv2.waitKey()

    #print("###### bs {}".format(descrNet.cfgParams.batch_size))
    testdata_set = BatchedImgSeqDataset()
    testdata_set.initFromImgSeqs(testSeqs,
                                 inputMode=inputMode,
                                 batchSize=descrNet.cfgParams.batch_size)

    # test it
    img0 = numpy.concatenate([x[0]
                              for x in testdata_set.x], axis=0) if isinstance(
                                  testdata_set.x, list) else testdata_set.x[0]
    img0 = numpy.swapaxes(numpy.swapaxes(img0, 0, 1), 1, 2)
    print(img0.shape)
    if showPlots:
        cv2.imshow("img0", img0 + 0.5)
    #cv2.waitKey()

    # DEBUG: show cam poses
    #visBatchedDatasetCamPoses(testdata_set)
    #plt.show()
    #raise ValueError("stop here")

    #############################################################
    # Templates  dataset
    #
    tmpl_set = loadTmplSeqsBatchedDataset(
        lmDataBasepath,
        targetSize=inputSize,
        batchSize=descrNet.cfgParams.batch_size,
        inputMode=inputMode,
        seqNames=seqNames,
        zRotInv=zRotInv)
    assert isinstance(tmpl_set.x,
                      list) or (tmpl_set.x.shape[1] == nChan
                                )  # if it's a list, it's more complicated :(

    #############################################################
    #  general informations about tmpl and test datasets
    #
    uLab = numpy.setdiff1d(numpy.union1d(testdata_set.y, tmpl_set.y),
                           numpy.array(-1),
                           assume_unique=True)
    print("uLab {}".format(uLab))
    numClasses = len(uLab)

    testDataValidIdx, = (testdata_set.y >= 0).nonzero()
    tmplDataValidIdx, = (tmpl_set.y >= 0).nonzero()

    testLabels = testdata_set.y[testDataValidIdx]
    tmplLabels = tmpl_set.y[tmplDataValidIdx]

    nTestSamp = len(testDataValidIdx)
    nTmpls = len(tmplLabels)

    numTmplPerClass = nTmpls / numClasses
    print("numTmplPerClass {}".format(numTmplPerClass))
    print("tmplDataValidIdx {}".format(len(tmplDataValidIdx)))

    tmplRots = tmpl_set.sampleInfo['rots'][tmplDataValidIdx]
    print("tmplRots.shape {}".format(tmplRots.shape))
    tmplRots = tmplRots / numpy.tile(
        numpy.linalg.norm(tmplRots, axis=1).reshape(nTmpls, 1),
        (1, 3))  # normalize

    testRots = testdata_set.sampleInfo['rots'][testDataValidIdx]
    testRots = testRots / numpy.tile(
        numpy.linalg.norm(testRots, axis=1).reshape(nTestSamp, 1),
        (1, 3))  # normalize
    print("tmplRots.shape {}, testRots.shape {}".format(
        tmplRots.shape, testRots.shape))

    #################################################################################
    # create a dataManager
    dataManagerConfig = MacroBatchManagerConfig()
    dataManagerConfig.batch_size = testdata_set.batchSize

    macroBatchSize = readCfgIntParam(cfg,
                                     'trainset',
                                     'macroBatchSize',
                                     default=-1)
    maxBytes = eval(
        readCfgParam(cfg, 'trainset', 'maxBytes', default=50 * 1024 * 1024))
    nTestBatches = testdata_set.numSamples / testdata_set.batchSize
    nTmplBatches = tmpl_set.numSamples / tmpl_set.batchSize
    batchSizeBytes = testdata_set.dataSizeNBytes / nTestBatches
    macroBatchSize = findNiceMacroBatchSize(macroBatchSize, maxBytes,
                                            batchSizeBytes,
                                            [nTestBatches, nTmplBatches])

    dataManager = MacroBatchManager(dataManagerConfig,
                                    macroBatchSize,
                                    acceptPartialMacroBatches=False)
    dataManager.setupVariables(testdata_set, doBorrow=True)

    #################################################################################
    # visualize testdata and traindata
    visTestDataDescrs = True
    testOnTrainData = False
    if testOnTrainData or visTestDataDescrs:

        # LOAD DATA
        print("Load train_set: {}".format(trainSetPklFileName))
        pklload_start_time = time.clock()
        #f = open(trainSetPklFileName, 'rb')
        #train_set,val_set = cPickle.load(f)
        #f.close()

        train_set = BatchedDataset.loadFromPkl(trainSetPklFileName)
        #val_set = BatchedDataset.loadFromPkl(valSetPklFileName)

        pklload_end_time = time.clock()

        print('Loading train_set took %.1fs' %
              ((pklload_end_time - pklload_start_time)))

        if visTestDataDescrs:
            calcAndVis3DDescriptorsWithRot(descrNet,
                                           testdata_set,
                                           dataManager,
                                           fileName=outFNBase +
                                           '_testdata_descrs.png')
            plt.title('test data')

        if testOnTrainData:
            #descrNetTrainer.test_on_train()
            calcAndVis3DDescriptorsWithRot(descrNet,
                                           train_set,
                                           dataManager,
                                           fileName=outFNBase +
                                           '_traindata_descrs.png')
            plt.title('train data')

    # test if the classes are mapped correctly by showing one sample of each class from train and test


#     for cl in range(4):
#         idx = numpy.flatnonzero(testdata_set.y == cl)
#         img = testdata_set.x[idx[0]].squeeze()
#         cv2.imshow("test{}".format(cl),img)
#         idx = numpy.flatnonzero(train_set.y == cl)
#         img = train_set.x[idx[0]].squeeze()
#         cv2.imshow("train{}".format(cl),img)

#rng = numpy.random.RandomState(23455)
#descrNetTrainer = DescrNetTrainer(descrNet,descrNetTrainerParams,rng)
#descrNetTrainer.setDataAndCompileFunctions(train_set,val_set,compileDebugFcts=False)#True)
#descrNetTrainer.setData(train_set,val_set,macroBatchSize=1)
#descrNetTrainer.test_on_train()

##
# vis cam poses for all data
    visCamPoses = False
    if visCamPoses and showPlots:
        visBatchedDatasetCamPoses(testdata_set)
        visBatchedDatasetCamPoses(train_set)

        visBatchedTrainDatasetCamPoses(train_set)
        plt.show(block=False)

    #raise ValueError("stop here")

    ##############################
    # TEST results
    descr_comp_start_time = time.clock()
    res = descrNet.computeDescriptors(testdata_set,
                                      dataManager,
                                      batch_size=testdata_set.batchSize)
    descr_comp_end_time = time.clock()
    # throw away results for invalid samples (that were added to fill up minibatches)
    testDescrs = res[testDataValidIdx]

    print('Computing descriptors for %d samples took %.1fs' %
          (testdata_set.numSamples,
           (descr_comp_end_time - descr_comp_start_time)))

    # calc descrs for templates
    #res = descrNet.computeDescriptors(tmpl_set.x,batch_size=tmpl_set.batchSize)
    dataManager.prepareForNewData()
    res = descrNet.computeDescriptors(tmpl_set,
                                      dataManager,
                                      batch_size=tmpl_set.batchSize)
    tmplDescrs = res[tmplDataValidIdx]

    print("tmplDescrs.shape {}".format(tmplDescrs.shape))

    # distances of descriptors
    dst = scipy.spatial.distance.cdist(testDescrs, tmplDescrs)
    print("dst.shape {}".format(dst.shape))

    # calculate similarity of poses of train sample and templates of the sample class
    sims = []
    for lab in uLab:
        sim = numpy.dot(testRots[testLabels == lab],
                        tmplRots[tmplLabels == lab].T)
        if zRotInv[lab] == 2:
            sim = numpy.maximum(
                sim,
                numpy.dot(
                    testRots[testLabels == lab] * numpy.array([-1, -1, 1]),
                    tmplRots[tmplLabels == lab].T))
        sims.append(sim + 2.)
    sim = scipy.linalg.block_diag(*sims) - 2.
    print("sim.shape {}".format(sim.shape))

    print("sim mn/mx {},{}".format(numpy.min(sim), numpy.max(sim)))

    # show sim matrix
    #cv2.imshow("sims",(sim-numpy.min(sim))/(numpy.max(sim) - numpy.min(sim)))

    # TODO, eval metrics:
    #    * pure accuracy: closest tmpl is the correct one (target)
    #    * cmc curve (target tmpl is among the first k closest)
    #    * curve: number of samples for which the closest tmpl has a rotation error below x

    # make sim block diag

    #------
    (acc, classAcc) = getAccRel(sim, dst)
    print("total test acc: {}%".format(acc * 100.))
    print("total test class acc: {}%".format(classAcc * 100.))

    # perSampSepScore
    perSampSepScore = getClassSepScore(sim, dst)
    minSepScore = numpy.min(perSampSepScore)
    maxSepScore = numpy.max(perSampSepScore)
    meanSepScore = numpy.mean(perSampSepScore)
    medSepScore = numpy.median(perSampSepScore)
    print("perSampSepScore mn/mx/mean/med {},{},{},{}".format(
        minSepScore, maxSepScore, meanSepScore, medSepScore))

    tikzFN = outFNBase + '_class_sep.tikz'
    pdfFN = outFNBase + '_class_sep.pdf'
    pngFN = outFNBase + '_class_sep.png'
    pklFN = outFNBase + '_class_sep.pkl'
    plotPerSampSepScore(perSampSepScore,
                        fileName=[pngFN, pdfFN],
                        tikzFileName=tikzFN,
                        pklFileName=pklFN)
    if showPlots:
        plt.show(block=False)

    tikzFN = outFNBase + '_acc_vs_angleerror.tikz'
    pdfFN = outFNBase + '_acc_vs_angleerror.pdf'
    pngFN = outFNBase + '_acc_vs_angleerror.png'
    pklFN = outFNBase + '_acc_vs_angleerror.pkl'
    print("saving {}".format(pngFN))
    plotAngleErrors(sim,
                    dst,
                    fileName=[pdfFN, pngFN],
                    tikzFileName=tikzFN,
                    pklFileName=pklFN,
                    showPlot=showPlots)

    #     # vis min dst and max sim
    #     minDst = numpy.min(dst,axis=1)
    #     cv2.imshow("minDst",(dst == minDst).astype(numpy.float))
    #     maxSim = numpy.min(sim,axis=1)
    #     cv2.imshow("maxSim",(sim == maxSim).astype(numpy.float))

    visClosestTmpls(testdata_set,
                    tmpl_set,
                    dst,
                    fileName=outFNBase + '_samples.png',
                    showPlot=showPlots)

    visWrongestClosestTmpls(testdata_set,
                            tmpl_set,
                            dst,
                            sim,
                            fileName=outFNBase + '_wrongestsamples.png',
                            showPlot=showPlots)

    ##
    # scatter all sims vs dsts per class
    tikzFN = outFNBase + '_sim_vs_dst.tikz'
    #pdfFN = outFNBase+'_sim_vs_dst.pdf'
    pngFN = outFNBase + '_sim_vs_dst.png'
    #visSimsVsDsts(sim=sim,dst=dst,uLab=uLab,rowLabels=testLabels,colLabels=tmplLabels,classLabels=seqNames,fileName=[pdfFN,pngFN],tikzFileName=tikzFN)#,mxDst=0.7)
    visSimsVsDsts(sim=sim,
                  dst=dst,
                  uLab=uLab,
                  rowLabels=testLabels,
                  colLabels=tmplLabels,
                  classLabels=seqNames,
                  fileName=pngFN)  #,mxDst=0.7)
    if showPlots:
        plt.show(block=False)

    tikzFN = outFNBase + '_sim_vs_dst_clipped.tikz'
    pngFN = outFNBase + '_sim_vs_dst_clipped.png'
    #visSimsVsDsts(sim=sim,dst=dst,uLab=uLab,rowLabels=testLabels,colLabels=tmplLabels,classLabels=seqNames,fileName=[pdfFN,pngFN],tikzFileName=tikzFN)#,mxDst=0.7)
    visSimsVsDsts(sim=sim,
                  dst=dst,
                  uLab=uLab,
                  rowLabels=testLabels,
                  colLabels=tmplLabels,
                  classLabels=seqNames,
                  clip=25,
                  fileName=pngFN)  #,mxDst=0.7)
    if showPlots:
        plt.show(block=False)

    # save config to file
    targetCfgFile = outFNBase + '_cfg.ini'
    cfg.set('net', 'weightsshapes', "{}".format(descrNet.getNumWeights()))
    cfg.set(
        'net', 'totalnumweights', "{}".format(
            numpy.sum([numpy.prod(ws) for ws in descrNet.getNumWeights()])))
    if not cfg.has_section('results'):
        cfg.add_section('results')
    cfg.set('results', 'acc', "{}".format(acc))
    cfg.set('results', 'classAcc', "{}".format(classAcc))
    cfg.set('results', 'minSepScore', "{}".format(minSepScore))
    cfg.set('results', 'maxSepScore', "{}".format(maxSepScore))
    cfg.set('results', 'meanSepScore', "{}".format(meanSepScore))
    cfg.set('results', 'medSepScore', "{}".format(medSepScore))
    with open(targetCfgFile, 'wb') as configfile:
        cfg.write(configfile)

    print("Saveing cfg along with other stuff to:")
    print("  '{}'".format(targetCfgFile))

    ######################################
    # wait for quit

    if showPlots:
        ch = 0
        plt.show(block=False)
        print("waiting for 'q'")
        while ((ch & 0xFF) != ord('q')) and (ch >= 0):

            ch = cv2.waitKey()
            print(" ... got '{}' ({})".format(chr(ch & 0xFF), ch))

        cv2.destroyAllWindows()

    if (showPlots):
        print("showing plots")
    else:
        print("not showing plots")
def linemod_vis_test_descr_main(fileName=None,cfg=None):
    
    theano.config.exception_verbosity = 'high'
    
    if fileName is None:
        g = glob.glob('../data/results/tmp/*_descrNet.pkl')
        fileName = sorted(g)[-1] 
        
    if os.path.isdir(fileName):
        g = glob.glob('{}/*_descrNet.pkl'.format(fileName))
        fileName = sorted(g)[-1]     
    
    outFNBase = fileName[:-len("descrNet.pkl")] + 'test'
    print("outFNBase {}".format(outFNBase))
    
    showPlots = readCfgIntParam(cfg,'misc','showPlots',default=1) > 0
    
    ######## load net
    res = loadTrainResultsPickle(fileName)
    descrNet = res[0]
    cfg = res[2]
    descrNetTrainerParams = res[3]
    
    imgsPklFileName = readCfgParam(cfg, 'input', 'imgsPklFileName', default="")
    trainSetPklFileName = readCfgParam(cfg, 'train', 'trainSetPklFileName', default="")
    
    #-------------
    nChan = descrNet.cfgParams.layers[0].image_shape[1]
    if nChan == 1:
        inputMode = 0
    elif nChan == 3:
        inputMode = 1
    elif nChan == 4:
        inputMode = 2
    else:
        raise ValueError("Unknown input mode: #channels = {}".format(nChan))
    inputSize = descrNet.cfgParams.layers[0].image_shape[2]
    
    print("inputMode = {}".format(inputMode))
    print("inputSize = {}".format(inputSize))

    ######## prepare test data    
    lmDataBasepath = readCfgParam(cfg,'paths', 'lmDataBase',default='/home/wohlhart/work/data/linemod/')
    
    seqNamesStr = readCfgParam(cfg, 'input','objs', default="")
    seqNames = map(str.strip,seqNamesStr.split(",")) 
    zRotInvStr = readCfgParam(cfg, 'input','zRotInv', default=[])
    zRotInv = list(eval(zRotInvStr))
    
    ###############################################################################################
    # create test set from test seq that was stored by main_linemod_realandsynth
    #   which did the split of the linemod data into train and test
    print("Loading images from pkl ... ")
    # LOAD from pkl
    pklload_start_time = time.clock()
    with open(imgsPklFileName, 'rb') as f:
        _,_,testSeqs = cPickle.load(f)
    pklload_end_time = time.clock()

    print ('Loading took %.1fs' % ((pklload_end_time - pklload_start_time)) )
    
    testdata_set = BatchedImgSeqDataset()
    testdata_set.initFromImgSeqs(testSeqs, inputMode=inputMode, batchSize=descrNet.cfgParams.batch_size)
    

    #############################################################
    #  general informations about tmpl and test datasets
    #
    testDataValidIdx, = (testdata_set.y >= 0).nonzero()
    testLabels = testdata_set.y[testDataValidIdx]
    
    nTestSamp = len(testDataValidIdx)

    testRots = testdata_set.sampleInfo['rots'][testDataValidIdx]
    testRots = testRots / numpy.tile(numpy.linalg.norm(testRots,axis=1).reshape(nTestSamp,1),(1,3))  # normalize
    #print("tmplRots.shape {}, testRots.shape {}".format(tmplRots.shape,testRots.shape))    
    
    #################################################################################
    # create a dataManager
    dataManagerConfig = MacroBatchManagerConfig()
    dataManagerConfig.batch_size = testdata_set.batchSize

    macroBatchSize = readCfgIntParam(cfg,'trainset','macroBatchSize',default=-1)
    maxBytes = eval(readCfgParam(cfg,'trainset','maxBytes',default=50*1024*1024))
    nTestSamples = testdata_set.x.shape[0] 
    nTestBatches = nTestSamples / testdata_set.batchSize
    #nTmplSamples = tmpl_set.x.shape[0]
    #nTmplBatches = nTmplSamples / tmpl_set.batchSize
    batchSizeBytes = testdata_set.x.nbytes / nTestBatches 
    macroBatchSize = findNiceMacroBatchSize(macroBatchSize, maxBytes, batchSizeBytes, [nTestBatches])
    
    dataManager = MacroBatchManager(dataManagerConfig,macroBatchSize,acceptPartialMacroBatches=False)
    dataManager.setupVariables(testdata_set, doBorrow=True)
    
    #################################################################################
    # visualize testdata and traindata
        
    # LOAD DATA

    # create trainer for macrobatches descriptor computation
    #rng = numpy.random.RandomState(23455)
    #descrNetTrainer = NetworkTrainer(descrNet,descrNetTrainerParams,rng)
    #descrNetTrainer.setData(train_set,val_set,macroBatchSize=1)

    calcAndVis3DDescriptorsWithRot(descrNet,testdata_set,dataManager)
    plt.title('test data')
    
    ######################################
    # wait for quit
    
    cv2.waitKey(10)
    plt.show(block=True)
    
    ch = 0
    while ((ch & 0xFF) != ord('q')) and (ch >= 0):
        print("waiting for 'q'")
        ch = cv2.waitKey() 
        print(" ... got '{}' ({})".format(chr(ch & 0xFF),ch))
    
    cv2.destroyAllWindows()