def main(_): console.start('{} on TO task'.format(model_name.upper())) th = core.th # --------------------------------------------------------------------------- # 0. date set setup # --------------------------------------------------------------------------- th.sequence_length = 100 th.bits = 3 # --------------------------------------------------------------------------- # 1. folder/file names and device # --------------------------------------------------------------------------- th.job_dir += '/{:02d}_{}'.format(id, model_name) summ_name = model_name th.visible_gpu_id = 0 th.prefix = '{}_'.format(date_string()) th.suffix = '' # --------------------------------------------------------------------------- # 2. model setup # --------------------------------------------------------------------------- th.model = model th.fast_layers = 2 table = {2: 41, 3: 45, 4: 47, 5: 49, 6: 50} th.fast_size = table[th.fast_layers] th.slow_size = th.fast_size th.hyper_kernel = 'lstm' th.forget_bias_initializer = 2.0 # --------------------------------------------------------------------------- # 3. trainer setup # --------------------------------------------------------------------------- th.max_iterations = 50000 th.optimizer = tf.train.AdamOptimizer th.learning_rate = 0.001 # --------------------------------------------------------------------------- # 4. summary and note setup # --------------------------------------------------------------------------- th.export_tensors_upon_validation = True # --------------------------------------------------------------------------- # 5. other stuff and activate # --------------------------------------------------------------------------- tail = '_{}bits_L{}'.format(th.bits, th.sequence_length) th.mark = FastSlow.mark() + tail th.gather_summ_name = th.prefix + summ_name + tail + th.suffix + '.sum' core.activate()
def main(_): console.start('{} on TO task'.format(model_name.upper())) th = core.th # --------------------------------------------------------------------------- # 0. date set setup # --------------------------------------------------------------------------- th.sequence_length = 100 th.bits = 3 # --------------------------------------------------------------------------- # 1. folder/file names and device # --------------------------------------------------------------------------- th.job_dir += '/{:02d}_{}'.format(id, model_name) summ_name = model_name th.visible_gpu_id = 0 th.prefix = '{}_'.format(date_string()) th.suffix = '' # --------------------------------------------------------------------------- # 2. model setup # --------------------------------------------------------------------------- th.model = model th.gam_config = '6x10' th.head_size = 10 th.hyper_kernel = 'gru' th.state_size = 60 th.num_layers = 1 # --------------------------------------------------------------------------- # 3. trainer setup # --------------------------------------------------------------------------- th.max_iterations = 50000 th.optimizer = tf.train.AdamOptimizer th.learning_rate = 0.001 # --------------------------------------------------------------------------- # 4. summary and note setup # --------------------------------------------------------------------------- th.export_tensors_upon_validation = True # --------------------------------------------------------------------------- # 5. other stuff and activate # --------------------------------------------------------------------------- tail = '_{}bits_L{}'.format(th.bits, th.sequence_length) th.mark = GamRHN.mark() + tail th.gather_summ_name = th.prefix + summ_name + tail + th.suffix + '.sum' core.activate()
def main(_): console.start('{} on TO task'.format(model_name.upper())) th = core.th # --------------------------------------------------------------------------- # 0. date set setup # --------------------------------------------------------------------------- th.sequence_length = 200 th.bits = 3 # --------------------------------------------------------------------------- # 1. folder/file names and device # --------------------------------------------------------------------------- th.job_dir += '/{:02d}_{}'.format(id, model_name) summ_name = model_name th.visible_gpu_id = 0 prefix = '{}_'.format(date_string()) suffix = '' # --------------------------------------------------------------------------- # 2. model setup # --------------------------------------------------------------------------- th.model = model th.state_size = 67 th.forget_bias_initializer = 2.0 # --------------------------------------------------------------------------- # 3. trainer setup # --------------------------------------------------------------------------- th.max_iterations = 10000 th.optimizer = tf.train.AdamOptimizer th.learning_rate = 0.001 # --------------------------------------------------------------------------- # 4. summary and note setup # --------------------------------------------------------------------------- th.export_tensors_upon_validation = True # --------------------------------------------------------------------------- # 5. other stuff and activate # --------------------------------------------------------------------------- tail = '_{}bits_L{}'.format(th.bits, th.sequence_length) + suffix th.mark = prefix + '{}({})'.format(model_name, th.state_size) + tail th.gather_summ_name = prefix + summ_name + tail + '.sum' core.activate()