示例#1
0
 def normalizer(self, proto):
     precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
     if not precompiled_charsmap:
         return normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")])
     else:
         return normalizers.Sequence(
             [normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(" {2,}"), " ")]
         )
    def from_spm(filename: str):
        try:
            import sys

            sys.path.append(".")

            import sentencepiece_model_pb2 as model
        except Exception:
            raise Exception(
                "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
            )

        m = model.ModelProto()
        m.ParseFromString(open(filename, "rb").read())

        precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
        vocab = [(piece.piece, piece.score) for piece in m.pieces]
        unk_id = m.trainer_spec.unk_id
        model_type = m.trainer_spec.model_type
        if model_type != 1:
            raise Exception(
                "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
            )

        data = {"unk_id": unk_id, "vocab": vocab}

        replacement = "▁"
        add_prefix_space = True

        out_vocab_filename = f"{filename}.json"
        try:
            with open(out_vocab_filename, "w") as f:
                json.dump(data, f, indent=4)

            tokenizer = Tokenizer(Unigram(out_vocab_filename))
        finally:
            os.remove(out_vocab_filename)

        tokenizer.normalizer = normalizers.Precompiled(precompiled_charsmap)
        tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
            [
                pre_tokenizers.WhitespaceSplit(),
                pre_tokenizers.Metaspace(
                    replacement=replacement, add_prefix_space=add_prefix_space
                ),
            ]
        )
        tokenizer.decoder = decoders.Metaspace(
            replacement=replacement, add_prefix_space=add_prefix_space
        )

        parameters = {
            "model": "SentencePieceUnigram",
        }

        obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
        BaseTokenizer.__init__(obj, tokenizer, parameters)
        return obj
示例#3
0
    def normalizer(self, proto):
        list_normalizers = [normalizers.Replace("``", '"'), normalizers.Replace("''", '"')]
        if not self.original_tokenizer.keep_accents:
            list_normalizers.append(normalizers.NFKD())
            list_normalizers.append(normalizers.StripAccents())
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
        list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
        return normalizers.Sequence(list_normalizers)
    def normalizer(self, proto):
        list_normalizers = []
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())
        list_normalizers.append(normalizers.Strip())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
        if precompiled_charsmap:
            list_normalizers.append(
                normalizers.Precompiled(precompiled_charsmap))
        list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))

        return normalizers.Sequence(list_normalizers)
 def normalizer(self, proto):
     precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
     return normalizers.Precompiled(precompiled_charsmap)