示例#1
0
def tomoseq_all_sim(point_mat, func):
    axis_list = ["x", "y", "z"]
    ts_all = tomo_seq_all_axis(point_mat)
    for axis in axis_list:
        ts_sim = expression_simulator(point_mat, func, axis)
        ts_all.ts_dict[axis] = ts_sim
    return (ts_all)
示例#2
0
 def register_tomoseq(self, prefix, hpf, stage="shield"):
     self.stage_time_dict[stage] = hpf
     self.t_vec = safe_append(self.t_vec, hpf)
     self.ts_t_vec = safe_append(self.ts_t_vec, hpf)
     pmat = self.ct.get_pmat(hpf)
     ts_all = tomo_seq_all_axis(pmat)
     axis_list = ["av", "vd", "lr"]
     for i in range(len(axis_list)):
         axis = axis_list[i]
         divnum = np.arange(-1400, 1400, self.div_width_dict_shield[axis])
         filename = prefix + "_" + axis + ".csv"
         ts_all.register_axis(filename, axis, divnum)
     self.ts_dict[hpf] = ts_all
示例#3
0
 def register_tomoseq_ss(self, prefix, hpf, stage="10ss", fix_angle=0):
     self.stage_time_dict[stage] = hpf
     self.t_vec = safe_append(self.t_vec, hpf)
     self.ts_t_vec = safe_append(self.ts_t_vec, hpf)
     pmat = self.ct.get_pmat(hpf)
     ts_all = tomo_seq_all_axis(pmat, fix_angle)
     axis_list = ["va", "dv", "lr"]
     label_list = ["av", "vd", "lr"]
     for i in range(len(axis_list)):
         axis = axis_list[i]
         label = label_list[i]
         divnum = np.arange(-1400, 1400, self.div_width_dict_ss10[axis])
         filename = prefix + "_" + label + ".csv"
         ts_all.register_axis(filename, axis, divnum)
     self.ts_dict[hpf] = ts_all
示例#4
0
 def register_tomoseq_divnum(self,
                             prefix,
                             hpf,
                             stage,
                             divnum_dict,
                             fix_angle,
                             axis_list=["av", "vd", "lr"],
                             label_list=["av", "vd", "lr"]):
     self.stage_time_dict[stage] = hpf
     self.t_vec = safe_append(self.t_vec, hpf)
     self.ts_t_vec = safe_append(self.ts_t_vec, hpf)
     pmat = self.ct.get_pmat(hpf)
     ts_all = tomo_seq_all_axis(pmat, fix_angle)
     for i in range(len(axis_list)):
         axis = axis_list[i]
         label = label_list[i]
         filename = prefix + "_" + label + ".csv"
         ts_all.register_axis(filename,
                              axis,
                              divnum_dict[axis],
                              divnum_direct=True)
     self.ts_dict[hpf] = ts_all
示例#5
0
                     type=str,
                     help='file prefix for cell density')
 parser.add_argument('--sample_num',
                     '-n',
                     default=2000,
                     type=int,
                     help='number of points sampled from cell density')
 parser.add_argument('--time', '-t', default=6.0, type=float, help='hpf')
 args = parser.parse_args()
 # cell coordinate preparation
 gpp = GP_data_processor()
 gpp.register_file(args.dens)
 point_mat = gpp.sample_point_time(args.time, size=args.sample_num)
 divnum = np.arange(-2, 2, 0.055)
 # expression data preparation
 ts_all = tomo_seq_all_axis(point_mat)
 for axis in ['av', 'vd', 'lr']:
     fname_av = args.expression + '_' + axis + '.csv'
     ts_all.register_axis(fname_av, axis, divnum)
 # adding data for STGE
 slice_all = ts_all.get_slice_list()
 gene_id = args.gene
 exp_all = ts_all.get_expression(gene_id)
 stge = STGE()
 stge.add_region_list(slice_all, exp_all)
 # tunig and save hyper parameters
 inits = np.random.uniform(0.01, 10, 3)
 res = stge.optimize_parameters(sigma_f=inits[0],
                                l_corr=inits[1],
                                sigma_obs=inits[2])
 gene_param = np.concatenate(([gene_id], res.astype(str))).reshape([1, 4])