示例#1
0
文件: detect.py 项目: Bohao-Lee/CME
def detect_skimage(cfgfile, weightfile, imgfile):
    from skimage import io
    from skimage.transform import resize
    m = Darknet(cfgfile)

    m.print_network()
    m.load_weights(weightfile)
    print('Loading weights from %s... Done!' % (weightfile))

    if m.num_classes == 20:
        namesfile = 'data/voc.names'
    elif m.num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'

    use_cuda = 1
    if use_cuda:
        m.cuda()

    img = io.imread(imgfile)
    sized = resize(img, (m.width, m.height)) * 255

    for i in range(2):
        start = time.time()
        boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
        finish = time.time()
        if i == 1:
            print('%s: Predicted in %f seconds.' % (imgfile, (finish - start)))

    class_names = load_class_names(namesfile)
    plot_boxes_cv2(img,
                   boxes,
                   savename='predictions.jpg',
                   class_names=class_names)
示例#2
0
文件: detect.py 项目: Bohao-Lee/CME
def detect(cfgfile, weightfile, imgfile):
    m = Darknet(cfgfile)

    m.print_network()
    m.load_weights(weightfile)
    print('Loading weights from %s... Done!' % (weightfile))

    if m.num_classes == 20:
        namesfile = 'data/voc.names'
    elif m.num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'

    use_cuda = 1
    if use_cuda:
        m.cuda()

    img = Image.open(imgfile).convert('RGB')
    sized = img.resize((m.width, m.height))

    for i in range(2):
        start = time.time()
        boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
        finish = time.time()
        if i == 1:
            print('%s: Predicted in %f seconds.' % (imgfile, (finish - start)))

    class_names = load_class_names(namesfile)
    plot_boxes(img, boxes, 'predictions.jpg', class_names)
示例#3
0
文件: demo.py 项目: Bohao-Lee/CME
def demo(cfgfile, weightfile):
    m = Darknet(cfgfile)
    m.print_network()
    m.load_weights(weightfile)
    print('Loading weights from %s... Done!' % (weightfile))

    if m.num_classes == 20:
        namesfile = 'data/voc.names'
    elif m.num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'
    class_names = load_class_names(namesfile)

    use_cuda = 1
    if use_cuda:
        m.cuda()

    cap = cv2.VideoCapture(0)
    if not cap.isOpened():
        print("Unable to open camera")
        exit(-1)

    while True:
        res, img = cap.read()
        if res:
            sized = cv2.resize(img, (m.width, m.height))
            bboxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
            print('------')
            draw_img = plot_boxes_cv2(img, bboxes, None, class_names)
            cv2.imshow(cfgfile, draw_img)
            cv2.waitKey(1)
        else:
            print("Unable to read image")
            exit(-1)
示例#4
0
文件: partial.py 项目: Bohao-Lee/CME
def partial(cfgfile, weightfile, outfile, cutoff):
    m = Darknet(cfgfile)
    m.print_network()
    m.load_weights(weightfile)
    m.seen = 0
    m.save_weights(outfile, cutoff)
    print('save %s' % (outfile))
示例#5
0
backupdir = cfg.backup
print('logging to ' + backupdir)
if not os.path.exists(backupdir):
    os.mkdir(backupdir)

###############
torch.manual_seed(seed)
if use_cuda:
    os.environ['CUDA_VISIBLE_DEVICES'] = gpus
    torch.cuda.manual_seed(seed)

model = Darknet(cfgfile)
region_loss = model.loss

model.load_weights(weightfile)
model.print_network()

# Prepare dataset
if cfg.yolo_joint:
    trainlist = dataset.loadlines(trainlist)
    n_bef = len(set(trainlist))
    metalist = dataset.loadlines(data_options['meta'], checkvalid=False)
    trainlist = sorted(list(set(trainlist + metalist)))
    n_aft = len(trainlist)
    print("number of samples: {} to {}".format(n_bef, n_aft))
    trainlist *= cfg.repeat
else:
    trainlist = dataset.loadlines(trainlist) * cfg.repeat

nsamples = len(trainlist)
region_loss.seen = model.seen
示例#6
0
def valid(datacfg, cfgfile, weightfile, outfile):
    options = read_data_cfg(datacfg)
    valid_images = options['valid']
    # backup = cfg.backup
    backup = weightfile.split('/')[-2]
    ckpt = weightfile.split('/')[-1].split('.')[0]
    prefix = 'results/' + backup.split('/')[-1] + '/e' + ckpt
    print('saving to: ' + prefix)
    names = cfg.classes

    with open(valid_images) as fp:
        tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]
    
    m = Darknet(cfgfile)
    m.print_network()
    m.load_weights(weightfile)
    m.cuda()
    m.eval()

    valid_dataset = dataset.listDataset(valid_images, shape=(m.width, m.height),
                                        shuffle=False,
                                        transform=transforms.Compose([
                           transforms.ToTensor(),
                       ]))
    valid_batchsize = 2
    assert(valid_batchsize > 1)

    kwargs = {'num_workers': 4, 'pin_memory': True}
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=valid_batchsize, shuffle=False, **kwargs) 

    fps = [0]*m.num_classes
    if not os.path.exists(prefix):
        # os.mkdir(prefix)
        os.makedirs(prefix)
    for i in range(m.num_classes):
        buf = '%s/%s%s.txt' % (prefix, outfile, names[i])
        fps[i] = open(buf, 'w')
   
    lineId = -1
    
    conf_thresh = 0.005
    nms_thresh = 0.45
    for batch_idx, (data, target) in enumerate(valid_loader):
        data = data.cuda()
        data = Variable(data, volatile = True)
        output = m(data).data
        batch_boxes = get_region_boxes(output, conf_thresh, m.num_classes, m.anchors, m.num_anchors, 0, 1)
        for i in range(output.size(0)):
            lineId = lineId + 1
            fileId = os.path.basename(valid_files[lineId]).split('.')[0]
            width, height = get_image_size(valid_files[lineId])
            print(valid_files[lineId])
            boxes = batch_boxes[i]
            boxes = nms(boxes, nms_thresh)
            for box in boxes:
                x1 = (box[0] - box[2]/2.0) * width
                y1 = (box[1] - box[3]/2.0) * height
                x2 = (box[0] + box[2]/2.0) * width
                y2 = (box[1] + box[3]/2.0) * height

                det_conf = box[4]
                # import pdb
                # pdb.set_trace()
                for j in range((len(box)-5)/2):
                    cls_conf = box[5+2*j]
                    cls_id = box[6+2*j]
                    prob =det_conf * cls_conf
                    fps[cls_id].write('%s %f %f %f %f %f\n' % (fileId, prob, x1, y1, x2, y2))
                    # fps[cls_id].write('%s %f %f %f %f %f %f\n' % (fileId, det_conf, cls_conf, x1, y1, x2, y2))

    for i in range(m.num_classes):
        fps[i].close()