def __init__(self, signal_images_list, bkg_image_list, json_name): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ signal_dict = create_table(signal_images_list, (json_name, 'id')) background_dict = create_table(bkg_image_list, (json_name, 'id')) try: print('clock: ', background_dict['clock'][0]) except: ''' ''' # print(signal_dict[json_name][1]) # assert 0 signal_images = np.array(signal_dict[json_name], dtype=object) background_images = np.array(background_dict[json_name], dtype=object) dataset_size = min(len(signal_images), len(background_images)) signal_labels = np.ones(dataset_size, dtype=np.float32) background_labels = np.zeros(dataset_size, dtype=np.float32) self.size = dataset_size * 2 self.trainX = np.concatenate( (signal_images[:dataset_size], background_images[:dataset_size]), axis=0) print(self.trainX.shape) self.trainY = np.concatenate((signal_labels, background_labels), axis=0) self.image_shape = (self.trainX.shape[-1], *self.trainX[0, 0].shape)
def __init__(self, signal_images_list, bkg_image_list, json_name): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ signal_dict = create_table(signal_images_list, (json_name, 'vertex')) background_dict = create_table(bkg_image_list, (json_name, 'vertex')) signal_images = np.array(signal_dict[json_name], dtype=object) background_images = np.array(background_dict[json_name], dtype=object) dataset_size = min(len(signal_images), len(background_images)) signal_labels = np.ones(dataset_size, dtype=np.float32) background_labels = np.zeros(dataset_size, dtype=np.float32) self.size = dataset_size * 2 indices = np.arange(self.size) np.random.shuffle(indices) self.trainX = np.concatenate( (signal_images[:dataset_size], background_images[:dataset_size]), axis=0)[indices] self.trainY = np.concatenate((signal_labels, background_labels), axis=0)[indices] self.image_shape = (self.trainX.shape[-1], *self.trainX[0, 0].shape)
def __init__(self, signal_images_list, bkg_image_list, json_name): signal_dict = create_table(signal_images_list, (json_name, 'id')) background_dict = create_table(bkg_image_list, (json_name, 'id')) signal_images = np.array(signal_dict[json_name], dtype=object) background_images = np.array(background_dict[json_name], dtype=object) dataset_size = min(len(signal_images), len(background_images)) signal_labels = np.ones(dataset_size, dtype=np.float32) background_labels = np.zeros(dataset_size, dtype=np.float32) self.size = dataset_size * 2 self.trainX = np.concatenate( (signal_images[:dataset_size], background_images[:dataset_size]), axis=0) print(self.trainX.shape) self.trainY = np.concatenate((signal_labels, background_labels), axis=0) self.image_shape = (self.trainX.shape[-1], *self.trainX[0, 0].shape)
def __init__(self, signal_images_list, bkg_image_list, json_name): signal_dict = create_table(signal_images_list, (json_name, 'vertex')) background_dict = create_table(bkg_image_list, (json_name, 'vertex')) print(len(signal_dict[json_name])) signal_images = np.array(signal_dict[json_name], dtype=object) background_images = np.array(background_dict[json_name], dtype=object) print(signal_images.shape, 'Abigail') dataset_size = min(len(signal_images), len(background_images)) signal_labels = np.ones(dataset_size, dtype=np.float32) background_labels = np.zeros(dataset_size, dtype=np.float32) self.size = dataset_size * 2 indices = np.arange(self.size) np.random.shuffle(indices) print(signal_images.shape, background_images.shape) self.trainX = np.concatenate( (signal_images[:dataset_size], background_images[:dataset_size]), axis=0)[indices] self.trainY = np.concatenate((signal_labels, background_labels), axis=0)[indices] self.image_shape = (self.trainX.shape[-1], *self.trainX[0, 0].shape)
time_index = args.time_index qe_index = args.qe_index json_name = str(time_index) + '_' + str(qe_index) signal_images_list = [ str(filename.strip()) for filename in list(open(args.signallist, 'r')) if filename != '' ] bkg_image_list = [ str(filename.strip()) for filename in list(open(args.bglist, 'r')) if filename != '' ] signal_images_list = signal_images_list[:1] bkg_image_list = bkg_image_list[:1] signal_dict = create_table(signal_images_list, (json_name, 'vertex')) background_dict = create_table(bkg_image_list, (json_name, 'vertex')) signal_images = np.array(signal_dict[json_name], dtype=object) background_images = np.array(background_dict[json_name], dtype=object) print(len(signal_images), len(background_images)) dataset_size = min(len(signal_images), len(background_images)) signal_labels = np.ones(dataset_size, dtype=np.float32) background_labels = np.zeros(dataset_size, dtype=np.float32) size = dataset_size * 2 indices = np.arange(size) np.random.shuffle(indices) trainX = np.concatenate( (signal_images[:dataset_size], background_images[:dataset_size]), axis=0)[indices] trainY = np.concatenate((signal_labels, background_labels), axis=0)[indices]