class Toolbox: def __init__(self, datasets_root, enc_models_dir, syn_models_dir, voc_models_dir, low_mem): sys.excepthook = self.excepthook self.datasets_root = datasets_root self.low_mem = low_mem self.utterances = set() self.current_generated = (None, None, None, None ) # speaker_name, spec, breaks, wav self.synthesizer = None # type: Synthesizer # Initialize the events and the interface self.ui = UI() self.reset_ui(enc_models_dir, syn_models_dir, voc_models_dir) self.setup_events() self.ui.start() def excepthook(self, exc_type, exc_value, exc_tb): traceback.print_exception(exc_type, exc_value, exc_tb) self.ui.log("Exception: %s" % exc_value) def setup_events(self): # Dataset, speaker and utterance selection self.ui.browser_load_button.clicked.connect( lambda: self.load_from_browser()) random_func = lambda level: lambda: self.ui.populate_browser( self.datasets_root, recognized_datasets, level) self.ui.random_dataset_button.clicked.connect(random_func(0)) self.ui.random_speaker_button.clicked.connect(random_func(1)) self.ui.random_utterance_button.clicked.connect(random_func(2)) self.ui.dataset_box.currentIndexChanged.connect(random_func(1)) self.ui.speaker_box.currentIndexChanged.connect(random_func(2)) # Model selection self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder) def func(): self.synthesizer = None self.ui.synthesizer_box.currentIndexChanged.connect(func) self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder) # Utterance selection func = lambda: self.load_from_browser(self.ui.browse_file()) self.ui.browser_browse_button.clicked.connect(func) func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current") self.ui.utterance_history.currentIndexChanged.connect(func) func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer .sample_rate) self.ui.play_button.clicked.connect(func) self.ui.stop_button.clicked.connect(self.ui.stop) self.ui.record_button.clicked.connect(self.record) # Generation func = lambda: self.synthesize() or self.vocode() self.ui.generate_button.clicked.connect(func) self.ui.synthesize_button.clicked.connect(self.synthesize) self.ui.vocode_button.clicked.connect(self.vocode) # UMAP legend self.ui.clear_button.clicked.connect(self.clear_utterances) def reset_ui(self, encoder_models_dir, synthesizer_models_dir, vocoder_models_dir): self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True) self.ui.populate_models(encoder_models_dir, synthesizer_models_dir, vocoder_models_dir) def load_from_browser(self, fpath=None): if fpath is None: fpath = Path(self.datasets_root, self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name) name = str(fpath.relative_to(self.datasets_root)) speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name # Select the next utterance if self.ui.auto_next_checkbox.isChecked(): self.ui.browser_select_next() elif fpath == "": return else: name = fpath.name speaker_name = fpath.parent.name # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for # playback, so as to have a fair comparison with the generated audio wav = Synthesizer.load_preprocess_wav(fpath) self.ui.log("Loaded %s" % name) self.add_real_utterance(wav, name, speaker_name) def record(self): wav = self.ui.record_one(encoder.sampling_rate, 5) if wav is None: return self.ui.play(wav, encoder.sampling_rate) speaker_name = "user01" name = speaker_name + "_rec_%05d" % np.random.randint(100000) self.add_real_utterance(wav, name, speaker_name) def add_real_utterance(self, wav, name, speaker_name): # Compute the mel spectrogram spec = Synthesizer.make_spectrogram(wav) self.ui.draw_spec(spec, "current") # Compute the embedding if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.load_preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance( encoder_wav, return_partials=True) # Add the utterance utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False) self.utterances.add(utterance) self.ui.register_utterance(utterance) # Plot it self.ui.draw_embed(embed, name, "current") self.ui.draw_umap_projections(self.utterances) def clear_utterances(self): self.utterances.clear() self.ui.draw_umap_projections(self.utterances) def synthesize(self): self.ui.log("Generating the mel spectrogram...") self.ui.set_loading(1) # Synthesize the spectrogram if self.synthesizer is None: model_dir = self.ui.current_synthesizer_model_dir checkpoints_dir = model_dir.joinpath("taco_pretrained") self.synthesizer = Synthesizer(checkpoints_dir, low_mem=self.low_mem) if not self.synthesizer.is_loaded(): self.ui.log("Loading the synthesizer %s" % self.synthesizer.checkpoint_fpath) texts = self.ui.text_prompt.toPlainText().split("\n") embed = self.ui.selected_utterance.embed embeds = np.stack([embed] * len(texts)) specs = self.synthesizer.synthesize_spectrograms(texts, embeds) breaks = [spec.shape[1] for spec in specs] spec = np.concatenate(specs, axis=1) self.ui.draw_spec(spec, "generated") self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None) self.ui.set_loading(0) def vocode(self): speaker_name, spec, breaks, _ = self.current_generated assert spec is not None # Synthesize the waveform if not vocoder.is_loaded(): self.init_vocoder() def vocoder_progress(i, seq_len, b_size, gen_rate): real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) self.ui.log(line, "overwrite") self.ui.set_loading(i, seq_len) if self.ui.current_vocoder_fpath is not None: self.ui.log("") wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) else: self.ui.log("Waveform generation with Griffin-Lim... ") wav = Synthesizer.griffin_lim(spec) self.ui.set_loading(0) self.ui.log(" Done!", "append") # Add breaks b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size) b_starts = np.concatenate(([0], b_ends[:-1])) wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)] breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks) wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) # Play it wav = wav / np.abs(wav).max() * 0.97 self.ui.play(wav, Synthesizer.sample_rate) # Compute the embedding # TODO: this is problematic with different sampling rates, gotta fix it if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.load_preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance( encoder_wav, return_partials=True) # Add the utterance name = speaker_name + "_gen_%05d" % np.random.randint(100000) utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True) self.utterances.add(utterance) # Plot it self.ui.draw_embed(embed, name, "generated") self.ui.draw_umap_projections(self.utterances) def init_encoder(self): model_fpath = self.ui.current_encoder_fpath self.ui.log("Loading the encoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() encoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def init_vocoder(self): model_fpath = self.ui.current_vocoder_fpath # Case of Griffin-lim if model_fpath is None: return self.ui.log("Loading the vocoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() vocoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0)
class Toolbox: def __init__(self, datasets_root, enc_models_dir, syn_models_dir, voc_models_dir, low_mem, seed, no_mp3_support): if not no_mp3_support: try: librosa.load("samples/6829_00000.mp3") except NoBackendError: print("Librosa will be unable to open mp3 files if additional software is not installed.\n" "Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.") exit(-1) self.no_mp3_support = no_mp3_support sys.excepthook = self.excepthook self.datasets_root = datasets_root self.low_mem = low_mem self.utterances = set() self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav self.synthesizer = None # type: Synthesizer self.current_wav = None self.waves_list = [] self.waves_count = 0 self.waves_namelist = [] # Check for webrtcvad (enables removal of silences in vocoder output) try: import webrtcvad self.trim_silences = True except: self.trim_silences = False # Initialize the events and the interface self.ui = UI() self.reset_ui(enc_models_dir, syn_models_dir, voc_models_dir, seed) self.setup_events() self.ui.start() def excepthook(self, exc_type, exc_value, exc_tb): traceback.print_exception(exc_type, exc_value, exc_tb) self.ui.log("Exception: %s" % exc_value) def setup_events(self): # Dataset, speaker and utterance selection self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser()) random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root, recognized_datasets, level) self.ui.random_dataset_button.clicked.connect(random_func(0)) self.ui.random_speaker_button.clicked.connect(random_func(1)) self.ui.random_utterance_button.clicked.connect(random_func(2)) self.ui.dataset_box.currentIndexChanged.connect(random_func(1)) self.ui.speaker_box.currentIndexChanged.connect(random_func(2)) # Model selection self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder) def func(): self.synthesizer = None self.ui.synthesizer_box.currentIndexChanged.connect(func) self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder) # Utterance selection func = lambda: self.load_from_browser(self.ui.browse_file()) self.ui.browser_browse_button.clicked.connect(func) #Audio book func = lambda: self.load_book(self.ui.browse_book()) self.ui.load_book.clicked.connect(func) func = lambda: self.synthBook() self.ui.synth_book.clicked.connect(func) # func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current") self.ui.utterance_history.currentIndexChanged.connect(func) func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer.sample_rate) self.ui.play_button.clicked.connect(func) self.ui.stop_button.clicked.connect(self.ui.stop) self.ui.record_button.clicked.connect(self.record) #Audio self.ui.setup_audio_devices(Synthesizer.sample_rate) #Wav playback & save func = lambda: self.replay_last_wav() self.ui.replay_wav_button.clicked.connect(func) func = lambda: self.export_current_wave() self.ui.export_wav_button.clicked.connect(func) self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav) # Generation func = lambda: self.synthesize() or self.vocode() self.ui.generate_button.clicked.connect(func) self.ui.synthesize_button.clicked.connect(self.synthesize) self.ui.vocode_button.clicked.connect(self.vocode) self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox) # UMAP legend self.ui.clear_button.clicked.connect(self.clear_utterances) def set_current_wav(self, index): self.current_wav = self.waves_list[index] def export_current_wave(self): self.ui.save_audio_file(self.current_wav, Synthesizer.sample_rate) def replay_last_wav(self): self.ui.play(self.current_wav, Synthesizer.sample_rate) def reset_ui(self, encoder_models_dir, synthesizer_models_dir, vocoder_models_dir, seed): self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True) self.ui.populate_models(encoder_models_dir, synthesizer_models_dir, vocoder_models_dir) self.ui.populate_gen_options(seed, self.trim_silences) def load_from_browser(self, fpath=None): if fpath is None: fpath = Path(self.datasets_root, self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name) name = str(fpath.relative_to(self.datasets_root)) speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name # Select the next utterance if self.ui.auto_next_checkbox.isChecked(): self.ui.browser_select_next() elif fpath == "": return else: name = fpath.name speaker_name = fpath.parent.name if fpath.suffix.lower() == ".mp3" and self.no_mp3_support: self.ui.log("Error: No mp3 file argument was passed but an mp3 file was used") return # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for # playback, so as to have a fair comparison with the generated audio wav = Synthesizer.load_preprocess_wav(fpath) self.ui.log("Loaded %s" % name) self.add_real_utterance(wav, name, speaker_name) def load_book(self, fpath=None): if(fpath is None or fpath == ""): return if(fpath.suffix.lower() == ".txt"): self.ui.text_prompt.clear() file = open(fpath.absolute().as_posix(),mode='r') text = file.read() text = text.replace(".",".\n") text = [line for line in text.split('\n') if line.strip() != ''] sep = '\n' text = sep.join(text) #text = text.replace(",",",\n") #text = text.replace(":",":\n") #text = text.replace("-","-\n") #text = text.replace("!","!\n") #text = text.replace("?","?\n) file.close() self.ui.text_prompt.appendPlainText(text) else: self.ui.log("Format is not supported") return def synthBook(self): k = 0 self.ui.log('Book synthesis start') texts = self.ui.text_prompt.toPlainText().split("\n") n = 2 for i in range(0, len(texts), n): newList = texts[i:i + n] sep = '\n' newText = sep.join(newList) #self.ui.log(newText) self.ui.text_prompt.clear() self.ui.text_prompt.appendPlainText(newText) self.synthesize() self.vocode() percent = str(((k+1)/(len(texts)/n)*100)) self.ui.log("Done for " + percent +"%") sf.write("output/{}.wav".format(k), self.current_wav, Synthesizer.sample_rate) k+=1 def record(self): wav = self.ui.record_one(encoder.sampling_rate, 5) if wav is None: return self.ui.play(wav, encoder.sampling_rate) speaker_name = "user01" name = speaker_name + "_rec_%05d" % np.random.randint(100000) self.add_real_utterance(wav, name, speaker_name) def add_real_utterance(self, wav, name, speaker_name): # Compute the mel spectrogram spec = Synthesizer.make_spectrogram(wav) self.ui.draw_spec(spec, "current") # Compute the embedding if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True) # Add the utterance utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False) self.utterances.add(utterance) self.ui.register_utterance(utterance) # Plot it self.ui.draw_embed(embed, name, "current") self.ui.draw_umap_projections(self.utterances) def clear_utterances(self): self.utterances.clear() self.ui.draw_umap_projections(self.utterances) def synthesize(self): self.ui.log("Generating the mel spectrogram...") self.ui.set_loading(1) # Synthesize the spectrogram if self.synthesizer is None: model_dir = self.ui.current_synthesizer_model_dir checkpoints_dir = model_dir.joinpath("taco_pretrained") self.synthesizer = Synthesizer(checkpoints_dir, low_mem=self.low_mem) if not self.synthesizer.is_loaded(): self.ui.log("Loading the synthesizer %s" % self.synthesizer.checkpoint_fpath) # Update the synthesizer random seed if self.ui.random_seed_checkbox.isChecked(): seed = self.synthesizer.set_seed(int(self.ui.seed_textbox.text())) self.ui.populate_gen_options(seed, self.trim_silences) else: seed = self.synthesizer.set_seed(None) texts = self.ui.text_prompt.toPlainText().split("\n") embed = self.ui.selected_utterance.embed embeds = np.stack([embed] * len(texts)) specs = self.synthesizer.synthesize_spectrograms(texts, embeds) breaks = [spec.shape[1] for spec in specs] spec = np.concatenate(specs, axis=1) self.ui.draw_spec(spec, "generated") self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None) self.ui.set_loading(0) def vocode(self): speaker_name, spec, breaks, _ = self.current_generated assert spec is not None # Initialize the vocoder model and make it determinstic, if user provides a seed if self.ui.random_seed_checkbox.isChecked(): seed = self.synthesizer.set_seed(int(self.ui.seed_textbox.text())) self.ui.populate_gen_options(seed, self.trim_silences) else: seed = None if seed is not None: torch.manual_seed(seed) # Synthesize the waveform if not vocoder.is_loaded() or seed is not None: self.init_vocoder() def vocoder_progress(i, seq_len, b_size, gen_rate): real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) self.ui.log(line, "overwrite") self.ui.set_loading(i, seq_len) if self.ui.current_vocoder_fpath is not None: self.ui.log("") wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) else: self.ui.log("Waveform generation with Griffin-Lim... ") wav = Synthesizer.griffin_lim(spec) self.ui.set_loading(0) self.ui.log(" Done!", "append") # Add breaks b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size) b_starts = np.concatenate(([0], b_ends[:-1])) wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)] breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks) wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) # Trim excessive silences if self.ui.trim_silences_checkbox.isChecked(): wav = encoder.preprocess_wav(wav) # Play it wav = wav / np.abs(wav).max() * 0.97 self.ui.play(wav, Synthesizer.sample_rate) # Name it (history displayed in combobox) # TODO better naming for the combobox items? wav_name = str(self.waves_count + 1) #Update waves combobox self.waves_count += 1 if self.waves_count > MAX_WAVES: self.waves_list.pop() self.waves_namelist.pop() self.waves_list.insert(0, wav) self.waves_namelist.insert(0, wav_name) self.ui.waves_cb.disconnect() self.ui.waves_cb_model.setStringList(self.waves_namelist) self.ui.waves_cb.setCurrentIndex(0) self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav) # Update current wav self.set_current_wav(0) #Enable replay and save buttons: self.ui.replay_wav_button.setDisabled(False) self.ui.export_wav_button.setDisabled(False) # Compute the embedding # TODO: this is problematic with different sampling rates, gotta fix it if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True) # Add the utterance name = speaker_name + "_gen_%05d" % np.random.randint(100000) utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True) self.utterances.add(utterance) # Plot it self.ui.draw_embed(embed, name, "generated") self.ui.draw_umap_projections(self.utterances) def init_encoder(self): model_fpath = self.ui.current_encoder_fpath self.ui.log("Loading the encoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() encoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def init_vocoder(self): model_fpath = self.ui.current_vocoder_fpath # Case of Griffin-lim if model_fpath is None: return self.ui.log("Loading the vocoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() vocoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def update_seed_textbox(self): self.ui.update_seed_textbox()
class Toolbox: def __init__(self, datasets_root: Path, models_dir: Path, seed: int = None): sys.excepthook = self.excepthook self.datasets_root = datasets_root self.utterances = set() self.current_generated = (None, None, None, None ) # speaker_name, spec, breaks, wav self.synthesizer = None # type: Synthesizer self.current_wav = None self.waves_list = [] self.waves_count = 0 self.waves_namelist = [] # Check for webrtcvad (enables removal of silences in vocoder output) try: import webrtcvad self.trim_silences = True except: self.trim_silences = False # Initialize the events and the interface self.ui = UI() self.reset_ui(models_dir, seed) self.setup_events() self.ui.start() def excepthook(self, exc_type, exc_value, exc_tb): traceback.print_exception(exc_type, exc_value, exc_tb) self.ui.log("Exception: %s" % exc_value) def setup_events(self): # Dataset, speaker and utterance selection self.ui.browser_load_button.clicked.connect( lambda: self.load_from_browser()) random_func = lambda level: lambda: self.ui.populate_browser( self.datasets_root, recognized_datasets, level) self.ui.random_dataset_button.clicked.connect(random_func(0)) self.ui.random_speaker_button.clicked.connect(random_func(1)) self.ui.random_utterance_button.clicked.connect(random_func(2)) self.ui.dataset_box.currentIndexChanged.connect(random_func(1)) self.ui.speaker_box.currentIndexChanged.connect(random_func(2)) # Model selection self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder) def func(): self.synthesizer = None self.ui.synthesizer_box.currentIndexChanged.connect(func) self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder) # Utterance selection func = lambda: self.load_from_browser(self.ui.browse_file()) self.ui.browser_browse_button.clicked.connect(func) func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current") self.ui.utterance_history.currentIndexChanged.connect(func) func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer .sample_rate) self.ui.play_button.clicked.connect(func) self.ui.stop_button.clicked.connect(self.ui.stop) self.ui.record_button.clicked.connect(self.record) #Audio self.ui.setup_audio_devices(Synthesizer.sample_rate) #Wav playback & save func = lambda: self.replay_last_wav() self.ui.replay_wav_button.clicked.connect(func) func = lambda: self.export_current_wave() self.ui.export_wav_button.clicked.connect(func) self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav) # Generation func = lambda: self.synthesize() or self.vocode() self.ui.generate_button.clicked.connect(func) self.ui.synthesize_button.clicked.connect(self.synthesize) self.ui.vocode_button.clicked.connect(self.vocode) self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox) # UMAP legend self.ui.clear_button.clicked.connect(self.clear_utterances) def set_current_wav(self, index): self.current_wav = self.waves_list[index] def export_current_wave(self): self.ui.save_audio_file(self.current_wav, Synthesizer.sample_rate) def replay_last_wav(self): self.ui.play(self.current_wav, Synthesizer.sample_rate) def reset_ui(self, models_dir: Path, seed: int = None): self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True) self.ui.populate_models(models_dir) self.ui.populate_gen_options(seed, self.trim_silences) def load_from_browser(self, fpath=None): if fpath is None: fpath = Path(self.datasets_root, self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name) name = str(fpath.relative_to(self.datasets_root)) speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name # Select the next utterance if self.ui.auto_next_checkbox.isChecked(): self.ui.browser_select_next() elif fpath == "": return else: name = fpath.name speaker_name = fpath.parent.name # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for # playback, so as to have a fair comparison with the generated audio wav = Synthesizer.load_preprocess_wav(fpath) self.ui.log("Loaded %s" % name) self.add_real_utterance(wav, name, speaker_name) def record(self): wav = self.ui.record_one(encoder.sampling_rate, 5) if wav is None: return self.ui.play(wav, encoder.sampling_rate) speaker_name = "user01" name = speaker_name + "_rec_%05d" % np.random.randint(100000) self.add_real_utterance(wav, name, speaker_name) def add_real_utterance(self, wav, name, speaker_name): # Compute the mel spectrogram spec = Synthesizer.make_spectrogram(wav) self.ui.draw_spec(spec, "current") # Compute the embedding if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance( encoder_wav, return_partials=True) # Add the utterance utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False) self.utterances.add(utterance) self.ui.register_utterance(utterance) # Plot it self.ui.draw_embed(embed, name, "current") self.ui.draw_umap_projections(self.utterances) def clear_utterances(self): self.utterances.clear() self.ui.draw_umap_projections(self.utterances) def synthesize(self): self.ui.log("Generating the mel spectrogram...") self.ui.set_loading(1) # Update the synthesizer random seed if self.ui.random_seed_checkbox.isChecked(): seed = int(self.ui.seed_textbox.text()) self.ui.populate_gen_options(seed, self.trim_silences) else: seed = None if seed is not None: torch.manual_seed(seed) # Synthesize the spectrogram if self.synthesizer is None or seed is not None: self.init_synthesizer() texts = self.ui.text_prompt.toPlainText().split("\n") embed = self.ui.selected_utterance.embed embeds = [embed] * len(texts) specs = self.synthesizer.synthesize_spectrograms(texts, embeds) breaks = [spec.shape[1] for spec in specs] spec = np.concatenate(specs, axis=1) self.ui.draw_spec(spec, "generated") self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None) self.ui.set_loading(0) def vocode(self): speaker_name, spec, breaks, _ = self.current_generated assert spec is not None # Initialize the vocoder model and make it determinstic, if user provides a seed if self.ui.random_seed_checkbox.isChecked(): seed = int(self.ui.seed_textbox.text()) self.ui.populate_gen_options(seed, self.trim_silences) else: seed = None if seed is not None: torch.manual_seed(seed) # Synthesize the waveform if not vocoder.is_loaded() or seed is not None: self.init_vocoder() def vocoder_progress(i, seq_len, b_size, gen_rate): real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) self.ui.log(line, "overwrite") self.ui.set_loading(i, seq_len) if self.ui.current_vocoder_fpath is not None: self.ui.log("") wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) else: self.ui.log("Waveform generation with Griffin-Lim... ") wav = Synthesizer.griffin_lim(spec) self.ui.set_loading(0) self.ui.log(" Done!", "append") # Add breaks b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size) b_starts = np.concatenate(([0], b_ends[:-1])) wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)] breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks) wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) # Trim excessive silences if self.ui.trim_silences_checkbox.isChecked(): wav = encoder.preprocess_wav(wav) # Play it wav = wav / np.abs(wav).max() * 0.97 self.ui.play(wav, Synthesizer.sample_rate) # Name it (history displayed in combobox) # TODO better naming for the combobox items? wav_name = str(self.waves_count + 1) #Update waves combobox self.waves_count += 1 if self.waves_count > MAX_WAVS: self.waves_list.pop() self.waves_namelist.pop() self.waves_list.insert(0, wav) self.waves_namelist.insert(0, wav_name) self.ui.waves_cb.disconnect() self.ui.waves_cb_model.setStringList(self.waves_namelist) self.ui.waves_cb.setCurrentIndex(0) self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav) # Update current wav self.set_current_wav(0) #Enable replay and save buttons: self.ui.replay_wav_button.setDisabled(False) self.ui.export_wav_button.setDisabled(False) # Compute the embedding # TODO: this is problematic with different sampling rates, gotta fix it if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance( encoder_wav, return_partials=True) # Add the utterance name = speaker_name + "_gen_%05d" % np.random.randint(100000) utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True) self.utterances.add(utterance) # Plot it self.ui.draw_embed(embed, name, "generated") self.ui.draw_umap_projections(self.utterances) def init_encoder(self): model_fpath = self.ui.current_encoder_fpath self.ui.log("Loading the encoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() encoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def init_synthesizer(self): model_fpath = self.ui.current_synthesizer_fpath self.ui.log("Loading the synthesizer %s... " % model_fpath) self.ui.set_loading(1) start = timer() self.synthesizer = Synthesizer(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def init_vocoder(self): model_fpath = self.ui.current_vocoder_fpath # Case of Griffin-lim if model_fpath is None: return self.ui.log("Loading the vocoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() vocoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def update_seed_textbox(self): self.ui.update_seed_textbox()
class Toolbox: def __init__(self, datasets_root, enc_models_dir, syn_models_dir, voc_models_dir, toolbox_files_dir, low_mem): sys.excepthook = self.excepthook self._out_dir = Path(toolbox_files_dir) self.make_out_dirs() self.datasets_root = datasets_root self.datasets = [p.name for p in Path(datasets_root).glob("*") if p.is_dir()] metapath = Path(self.datasets_root).joinpath("metadata.csv") if metapath.is_file(): itdt = {} for line in open(metapath, encoding="utf8"): idx, text = line.strip().split("\t") itdt[idx] = text self.itdt = itdt else: self.itdt = {} self.low_mem = low_mem self.utterances = set() self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav self.synthesizer = None # type: Synthesizer # Initialize the events and the interface self.ui = UI() self.reset_ui(enc_models_dir, syn_models_dir, voc_models_dir) self.setup_events() self.ui.start() def make_out_dirs(self): self._out_dir.mkdir(exist_ok=True) self._out_mel_dir = self._out_dir.joinpath('mels') self._out_mel_dir.mkdir(exist_ok=True) self._out_wav_dir = self._out_dir.joinpath('wavs') self._out_wav_dir.mkdir(exist_ok=True) self._out_embed_dir = self._out_dir.joinpath('embeds') self._out_embed_dir.mkdir(exist_ok=True) self._out_record_dir = self._out_dir.joinpath('records') self._out_record_dir.mkdir(exist_ok=True) def excepthook(self, exc_type, exc_value, exc_tb): traceback.print_exception(exc_type, exc_value, exc_tb) self.ui.log("Exception: %s" % exc_value) def setup_events(self): # Dataset, speaker and utterance selection self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser()) random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root, self.datasets, level) text_func = lambda: self.ui.text_prompt.setPlainText(np.random.choice(total_texts)) self.ui.random_dataset_button.clicked.connect(text_func) self.ui.random_speaker_button.clicked.connect(random_func(1)) self.ui.random_utterance_button.clicked.connect(random_func(2)) self.ui.dataset_box.currentIndexChanged.connect(random_func(1)) self.ui.speaker_box.currentIndexChanged.connect(random_func(2)) # Model selection self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder) def func(): self.synthesizer = None self.ui.synthesizer_box.currentIndexChanged.connect(func) self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder) # Utterance selection func = lambda: self.load_from_browser(self.ui.browse_file()) self.ui.browser_browse_button.clicked.connect(func) func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current") self.ui.utterance_history.currentIndexChanged.connect(func) func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer.sample_rate) self.ui.play_button.clicked.connect(func) self.ui.stop_button.clicked.connect(self.ui.stop) self.ui.record_button.clicked.connect(self.record) self.ui.take_generated_button.clicked.connect(self.preprocess) # Generation func = lambda: self.synthesize() or self.vocode() self.ui.generate_button.clicked.connect(func) self.ui.compare_button.clicked.connect(self.compare) self.ui.synthesize_button.clicked.connect(self.synthesize) self.ui.vocode_button.clicked.connect(self.vocode) # UMAP legend self.ui.clear_button.clicked.connect(self.clear_utterances) def reset_ui(self, encoder_models_dir, synthesizer_models_dir, vocoder_models_dir): self.ui.populate_browser(self.datasets_root, self.datasets, 0, True) self.ui.populate_models(encoder_models_dir, synthesizer_models_dir, vocoder_models_dir) def load_from_browser(self, fpath=None): if fpath is None: fpath = Path(self.datasets_root, self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name) # name = '/'.join(fpath.relative_to(self.datasets_root).parts) dat = self.ui.current_dataset_name.replace("\\", "#").replace("/", "#") spk = self.ui.current_speaker_name.replace("\\", "#").replace("/", "#") aud = self.ui.current_utterance_name.replace("\\", "#").replace("/", "#") speaker_name = "#".join((dat, spk)) name = "#".join((speaker_name, aud)) # name = '-'.join(fpath.relative_to(self.datasets_root.joinpath(self.ui.current_dataset_name)).parts) # speaker_name = self.ui.current_speaker_name.replace("\\", "-").replace("/", "-") # Select the next utterance if self.ui.auto_next_checkbox.isChecked(): self.ui.browser_select_next() elif fpath == "": return else: name = fpath.name speaker_name = fpath.parent.name # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for # playback, so as to have a fair comparison with the generated audio wav = Synthesizer.load_preprocess_wav(fpath) self.ui.log("Loaded %s" % name) self.add_real_utterance(wav, name, speaker_name) def compare(self): """ 1.判断参考音频是否有对应文本。 2.输入框更新为参考文本。 3.合成参考音频对应文本的语音。 4.展示embed,spectrogram,alignment。 :return: """ idx = self.ui.selected_utterance.name.replace("#", "/") idx = re.sub(r"(_preprocessed)(\..*?)$", r"\2", idx) if idx not in self.itdt: print("Compare Failed! index: {}".format(idx)) return self.ui.text_prompt.setPlainText(self.itdt[idx]) self.synthesize() self.vocode() def preprocess(self): wav = self.ui.selected_utterance.wav out = aukit.remove_noise(wav, sr=Synthesizer.sample_rate) hp = aukit.Dict2Obj({}) hp["vad_window_length"] = 10 # milliseconds hp["vad_moving_average_width"] = 2 hp["vad_max_silence_length"] = 2 hp["audio_norm_target_dBFS"] = -32 hp["sample_rate"] = 16000 hp["int16_max"] = (2 ** 15) - 1 out = trim_long_silences(out, hparams=hp) spec = Synthesizer.make_spectrogram(out) self.ui.draw_align(spec[::-1], "current") name = filename_add_suffix(self.ui.selected_utterance.name, "_preprocessed") speaker_name = self.ui.selected_utterance.speaker_name self.add_real_utterance(out, name, speaker_name) def record(self): wav = self.ui.record_one(encoder.sampling_rate, 5) if wav is None: return self.ui.play(wav, encoder.sampling_rate) speaker_name = "user01" name = speaker_name + "_rec_{}".format(time_formatter()) fpath = self._out_record_dir.joinpath(name + '.wav') audio.save_wav(wav, fpath, encoder.sampling_rate) # save wav = Synthesizer.load_preprocess_wav(fpath) # 保持一致的数据格式 self.add_real_utterance(wav, name, speaker_name) def add_real_utterance(self, wav, name, speaker_name): # Compute the mel spectrogram spec = Synthesizer.make_spectrogram(wav) self.ui.draw_spec(spec, "current") # Compute the embedding if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True) np.save(self._out_embed_dir.joinpath(name + '.npy'), embed, allow_pickle=False) # save # Add the utterance utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False) self.utterances.add(utterance) self.ui.register_utterance(utterance) # Plot it self.ui.draw_embed(embed, name, "current") self.ui.draw_umap_projections(self.utterances) def clear_utterances(self): self.utterances.clear() self.ui.draw_umap_projections(self.utterances) def synthesize(self): self.ui.log("Generating the mel spectrogram...") self.ui.set_loading(1) # Synthesize the spectrogram if self.synthesizer is None: model_dir = Path(self.ui.current_synthesizer_model_dir) checkpoints_dir = model_dir.joinpath("checkpoints") hp_path = model_dir.joinpath("metas", "hparams.json") # load from trained models if hp_path.exists(): hparams = aukit.Dict2Obj(json.load(open(hp_path, encoding="utf8"))) else: hparams = None self.synthesizer = Synthesizer(checkpoints_dir, low_mem=self.low_mem, hparams=hparams) if not self.synthesizer.is_loaded(): self.ui.log("Loading the synthesizer %s" % self.synthesizer.checkpoint_fpath) ptext = self.ui.text_prompt.toPlainText() texts = ptext.split("\n") embed = self.ui.selected_utterance.embed embeds = np.stack([embed] * len(texts)) specs, aligns = self.synthesizer.synthesize_spectrograms(texts, embeds, return_alignments=True) breaks = [spec.shape[1] for spec in specs] spec = np.concatenate(specs, axis=1) align = np.concatenate(aligns, axis=1) fref = self.ui.selected_utterance.name ftext = '。'.join(texts) ftime = '{}'.format(time_formatter()) fname = filename_formatter('{}_{}_{}zi_{}.npy'.format(fref, ftime, len(ftext), ftext)) np.save(self._out_mel_dir.joinpath(fname), spec, allow_pickle=False) # save self.ui.draw_spec(spec, "generated") self.ui.draw_align(align, "generated") self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None) self.ui.set_loading(0) def vocode(self): speaker_name, spec, breaks, _ = self.current_generated assert spec is not None # Synthesize the waveform if not vocoder.is_loaded(): self.init_vocoder() def vocoder_progress(i, seq_len, b_size, gen_rate): real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) self.ui.log(line, "overwrite") self.ui.set_loading(i, seq_len) wav = None vocname = "" if self.ui.current_vocoder_fpath is not None: model_fpath = self.ui.current_vocoder_fpath vocname = Path(model_fpath).parent.stem if Path(model_fpath).parent.stem == "melgan": self.ui.log("Waveform generation with MelGAN... ") wav = vocoder_melgan.infer_waveform_melgan(spec, model_fpath) elif Path(model_fpath).parent.stem == "wavernn": self.ui.log("Waveform generation with WaveRNN... ") wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) if wav is None: vocname = "griffinlim" self.ui.log("Waveform generation with Griffin-Lim... ") wav = Synthesizer.griffin_lim(spec) self.ui.set_loading(0) self.ui.log(" Done!", "append") # Play it wav = wav / np.abs(wav).max() * 0.97 self.ui.play(wav, Synthesizer.sample_rate) fref = self.ui.selected_utterance.name ftime = '{}'.format(time_formatter()) ftext = self.ui.text_prompt.toPlainText() fms = int(len(wav) * 1000 / Synthesizer.sample_rate) fvoc = vocname fname = filename_formatter('{}_{}_{}_{}ms_{}.wav'.format(fref, ftime, fvoc, fms, ftext)) audio.save_wav(wav, self._out_wav_dir.joinpath(fname), Synthesizer.sample_rate) # save # Compute the embedding # TODO: this is problematic with different sampling rates, gotta fix it if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True) # Add the utterance name = speaker_name + "_gen_{}".format(time_formatter()) utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True) np.save(self._out_embed_dir.joinpath(name + '.npy'), embed, allow_pickle=False) # save self.utterances.add(utterance) # Plot it self.ui.draw_embed(embed, name, "generated") self.ui.draw_umap_projections(self.utterances) def init_encoder(self): model_fpath = self.ui.current_encoder_fpath self.ui.log("Loading the encoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() encoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def init_vocoder(self): model_fpath = self.ui.current_vocoder_fpath # Case of Griffin-lim if model_fpath is None: return else: self.ui.log("Loading the vocoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() if Path(model_fpath).parent.stem == "melgan": vocoder_melgan.load_vocoder_melgan(model_fpath) elif Path(model_fpath).parent.stem == "wavernn": vocoder.load_model(model_fpath) else: return self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0)
class Toolbox: def __init__(self, datasets_root, enc_models_dir, syn_models_dir, voc_models_dir, toolbox_files_dir, low_mem): sys.excepthook = self.excepthook self._out_dir = Path(toolbox_files_dir) self.make_out_dirs() self.datasets_root = datasets_root self.low_mem = low_mem self.utterances = set() self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav self.synthesizer = None # type: Synthesizer # Initialize the events and the interface self.ui = UI() self.reset_ui(enc_models_dir, syn_models_dir, voc_models_dir) self.setup_events() self.ui.start() def make_out_dirs(self): self._out_dir.mkdir(exist_ok=True) self._out_mel_dir = self._out_dir.joinpath('mels') self._out_mel_dir.mkdir(exist_ok=True) self._out_wav_dir = self._out_dir.joinpath('wavs') self._out_wav_dir.mkdir(exist_ok=True) self._out_embed_dir = self._out_dir.joinpath('embeds') self._out_embed_dir.mkdir(exist_ok=True) self._out_record_dir = self._out_dir.joinpath('records') self._out_record_dir.mkdir(exist_ok=True) def excepthook(self, exc_type, exc_value, exc_tb): traceback.print_exception(exc_type, exc_value, exc_tb) self.ui.log("Exception: %s" % exc_value) def setup_events(self): # Dataset, speaker and utterance selection self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser()) random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root, recognized_datasets, level) text_func = lambda: self.ui.text_prompt.setPlainText(np.random.choice(total_texts, 1)[0]) self.ui.random_dataset_button.clicked.connect(text_func) self.ui.random_speaker_button.clicked.connect(random_func(1)) self.ui.random_utterance_button.clicked.connect(random_func(2)) self.ui.dataset_box.currentIndexChanged.connect(random_func(1)) self.ui.speaker_box.currentIndexChanged.connect(random_func(2)) # Model selection self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder) def func(): self.synthesizer = None self.ui.synthesizer_box.currentIndexChanged.connect(func) self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder) # Utterance selection func = lambda: self.load_from_browser(self.ui.browse_file()) self.ui.browser_browse_button.clicked.connect(func) func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current") self.ui.utterance_history.currentIndexChanged.connect(func) func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer.sample_rate) self.ui.play_button.clicked.connect(func) self.ui.stop_button.clicked.connect(self.ui.stop) self.ui.record_button.clicked.connect(self.record) # Generation func = lambda: self.synthesize() or self.vocode() self.ui.generate_button.clicked.connect(func) self.ui.synthesize_button.clicked.connect(self.synthesize) self.ui.vocode_button.clicked.connect(self.vocode) # UMAP legend self.ui.clear_button.clicked.connect(self.clear_utterances) def reset_ui(self, encoder_models_dir, synthesizer_models_dir, vocoder_models_dir): self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True) self.ui.populate_models(encoder_models_dir, synthesizer_models_dir, vocoder_models_dir) def load_from_browser(self, fpath=None): if fpath is None: fpath = Path(self.datasets_root, self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name) # name = '-'.join(fpath.relative_to(self.datasets_root).parts) speaker_name = "-".join((self.ui.current_dataset_name.replace("\\", "_").replace("/", "_"), self.ui.current_speaker_name.replace("\\", "_").replace("/", "_"))) name = "-".join((speaker_name, self.ui.current_utterance_name.replace("\\", "_").replace("/", "_"))) # name = '-'.join(fpath.relative_to(self.datasets_root.joinpath(self.ui.current_dataset_name)).parts) # speaker_name = self.ui.current_speaker_name.replace("\\", "-").replace("/", "-") # Select the next utterance if self.ui.auto_next_checkbox.isChecked(): self.ui.browser_select_next() elif fpath == "": return else: name = fpath.name speaker_name = fpath.parent.name # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for # playback, so as to have a fair comparison with the generated audio wav = Synthesizer.load_preprocess_wav(fpath) self.ui.log("Loaded %s" % name) self.add_real_utterance(wav, name, speaker_name) def record(self): wav = self.ui.record_one(encoder.sampling_rate, 5) if wav is None: return self.ui.play(wav, encoder.sampling_rate) speaker_name = "user01" name = speaker_name + "_rec_%d" % int(time.time()) audio.save_wav(wav, self._out_record_dir.joinpath(name + '.wav'), encoder.sampling_rate) # save self.add_real_utterance(wav, name, speaker_name) def add_real_utterance(self, wav, name, speaker_name): # Compute the mel spectrogram spec = Synthesizer.make_spectrogram(wav) self.ui.draw_spec(spec, "current") # Compute the embedding if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True) np.save(self._out_embed_dir.joinpath(name + '.npy'), embed, allow_pickle=False) # save # Add the utterance utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False) self.utterances.add(utterance) self.ui.register_utterance(utterance) # Plot it self.ui.draw_embed(embed, name, "current") self.ui.draw_umap_projections(self.utterances) def clear_utterances(self): self.utterances.clear() self.ui.draw_umap_projections(self.utterances) def synthesize(self): self.ui.log("Generating the mel spectrogram...") self.ui.set_loading(1) # Synthesize the spectrogram if self.synthesizer is None: model_dir = self.ui.current_synthesizer_model_dir checkpoints_dir = model_dir.joinpath("taco_pretrained") self.synthesizer = Synthesizer(checkpoints_dir, low_mem=self.low_mem) if not self.synthesizer.is_loaded(): self.ui.log("Loading the synthesizer %s" % self.synthesizer.checkpoint_fpath) ptext = self.ui.text_prompt.toPlainText() # if ptext.startswith("py"): # 适用于sync2,适应训练时候用pinyin+chinese_cleaners的bug # ptext = get_pinyin(ptext[2:]) # 把chinese_cleaners的lowercase用起来,否则不能合成。 ptext = " ".join(text2pinyin(ptext)) texts = ptext.split("\n") print(dict(texts=texts)) embed = self.ui.selected_utterance.embed embeds = np.stack([embed] * len(texts)) specs = self.synthesizer.synthesize_spectrograms(texts, embeds) # 去除前后安静或噪声部分 for num, spec in enumerate(specs): tmp = spec.T sidx, eidx = find_start_end_points(tmp) specs[num] = tmp[sidx:eidx].T # specs = [spec.T[:find_endpoint(spec.T)].T for spec in specs] # find endpoint breaks = [spec.shape[1] for spec in specs] spec = np.concatenate(specs, axis=1) fref = '-'.join([self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name]) ftext = '。'.join(texts) ftime = '{}'.format(int(time.time())) fname = filename_formatter('{}_{}_{}zi_{}.npy'.format(fref, ftime, len(ftext), ftext)) np.save(self._out_mel_dir.joinpath(fname), spec, allow_pickle=False) # save self.ui.draw_spec(spec, "generated") self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None) self.ui.set_loading(0) def vocode(self): speaker_name, spec, breaks, _ = self.current_generated assert spec is not None # Synthesize the waveform if not vocoder.is_loaded(): self.init_vocoder() def vocoder_progress(i, seq_len, b_size, gen_rate): real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) self.ui.log(line, "overwrite") self.ui.set_loading(i, seq_len) if self.ui.current_vocoder_fpath is not None: self.ui.log("") wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) else: self.ui.log("Waveform generation with Griffin-Lim... ") wav = Synthesizer.griffin_lim(spec) self.ui.set_loading(0) self.ui.log(" Done!", "append") # Add breaks b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size) b_starts = np.concatenate(([0], b_ends[:-1])) wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)] breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks) wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) # Play it wav = wav / np.abs(wav).max() * 0.97 self.ui.play(wav, Synthesizer.sample_rate) fref = '-'.join([self.ui.current_dataset_name, self.ui.current_speaker_name, self.ui.current_utterance_name]) ftime = '{}'.format(int(time.time())) ftext = self.ui.text_prompt.toPlainText() fms = int(len(wav) * 1000 / Synthesizer.sample_rate) fname = filename_formatter('{}_{}_{}ms_{}.wav'.format(fref, ftime, fms, ftext)) audio.save_wav(wav, self._out_wav_dir.joinpath(fname), Synthesizer.sample_rate) # save # Compute the embedding # TODO: this is problematic with different sampling rates, gotta fix it if not encoder.is_loaded(): self.init_encoder() encoder_wav = encoder.preprocess_wav(wav) embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True) # Add the utterance name = speaker_name + "_gen_%05d" % int(time.time()) utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True) np.save(self._out_embed_dir.joinpath(name + '.npy'), embed, allow_pickle=False) # save self.utterances.add(utterance) # Plot it self.ui.draw_embed(embed, name, "generated") self.ui.draw_umap_projections(self.utterances) def init_encoder(self): model_fpath = self.ui.current_encoder_fpath self.ui.log("Loading the encoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() encoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0) def init_vocoder(self): model_fpath = self.ui.current_vocoder_fpath # Case of Griffin-lim if model_fpath is None: return self.ui.log("Loading the vocoder %s... " % model_fpath) self.ui.set_loading(1) start = timer() vocoder.load_model(model_fpath) self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append") self.ui.set_loading(0)