def plot_scene_difficulty(scenes, subdir="overview", fs=10): n_scenes_per_row = 4 rows, cols = 6, n_scenes_per_row + 1 fig = plt.figure(figsize=(6, 9)) grid, cb_height, cb_width = plotting.get_grid_with_colorbar( rows, cols, scenes[0]) colorbar_args = { "height": cb_height, "width": cb_width, "colorbar_bins": 2, "fontsize": fs } median_algo = PerPixMedianDiff() best_algo = PerPixBest() for idx_s, scene in enumerate(scenes): # prepare data gt = scene.get_gt() median_result = misc.get_algo_result(median_algo, scene) best_result = misc.get_algo_result(best_algo, scene) idx_row = idx_s / n_scenes_per_row * 2 idx_col = (idx_s % n_scenes_per_row) add_ylabel = not idx_s % n_scenes_per_row # is first column add_colorbar = idx_col == (n_scenes_per_row - 1) # is last column idx = idx_row * cols + idx_col # plot errors for median result plt.subplot(grid[idx]) plt.title(scene.get_display_name(), fontsize=fs) cb = plt.imshow(np.abs(gt - median_result), **settings.abs_diff_map_args()) if add_ylabel: plt.ylabel("|GT - %s|" % median_algo.get_display_name(), fontsize=fs - 2) if add_colorbar: plotting.add_colorbar(grid[idx + 1], cb, **colorbar_args) # plot error for best result plt.subplot(grid[idx + cols]) cb = plt.imshow(np.abs(gt - best_result), **settings.abs_diff_map_args()) if add_ylabel: plt.ylabel("|GT - %s|" % best_algo.get_display_name(), fontsize=fs - 2) if add_colorbar: plotting.add_colorbar(grid[idx + cols + 1], cb, **colorbar_args) fig_path = plotting.get_path_to_figure("scene_difficulty", subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=True, hspace=0.08, wspace=0.03)
def main(): parser = OptionParser([SceneOps(), AlgorithmOps(with_gt=True), MetaAlgorithmOps(default=[])]) scenes, algorithms, meta_algorithms, compute_meta_algos = parser.parse_args() # delay imports to speed up usage response from toolkit import settings from toolkit.algorithms import MetaAlgorithm from toolkit.utils import log, misc, point_cloud if compute_meta_algos and meta_algorithms: MetaAlgorithm.prepare_meta_algorithms(meta_algorithms, algorithms, scenes) algorithms += meta_algorithms for scene in scenes: center_view = scene.get_center_view() for algorithm in algorithms: if algorithm.get_name() == "gt": disp_map = scene.get_gt() else: disp_map = misc.get_algo_result(algorithm, scene) log.info("Creating point cloud for scene '%s' with '%s' disparity map." % (scene.get_name(), algorithm.get_name())) pc = point_cloud.convert(scene, disp_map, center_view) file_name = "%s_%s.ply" % (scene.get_name(), algorithm.get_name()) file_path = op.join(settings.EVAL_PATH, "point_clouds", file_name) log.info("Saving point cloud to: %s" % file_path) point_cloud.save(pc, file_path)
def plot_pairwise_comparison(algo1, algo2, scenes, n_scenes_per_row=4, subdir="pairwise_diffs"): rows, cols = int(np.ceil(len(scenes) / float(n_scenes_per_row))), n_scenes_per_row fig = plt.figure(figsize=(4 * cols, 3 * rows)) for idx_s, scene in enumerate(scenes): algo_result_1 = misc.get_algo_result(algo1, scene) algo_result_2 = misc.get_algo_result(algo2, scene) gt = scene.get_gt() plt.subplot(rows, cols, idx_s + 1) cb = plt.imshow(np.abs(algo_result_1 - gt) - np.abs(algo_result_2 - gt), interpolation="none", cmap=cm.seismic, vmin=-.1, vmax=.1) plt.colorbar(cb, shrink=0.7) plt.title(scene.get_display_name()) # title a1 = algo1.get_display_name() a2 = algo2.get_display_name() plt.suptitle( "|%s - GT| - |%s - GT|\nblue: %s is better, red: %s is better" % (a1, a2, a1, a2)) fig_name = "pairwise_diffs_%s_%s" % (algo1.get_name(), algo2.get_name()) fig_path = plotting.get_path_to_figure(fig_name, subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=True, padding_top=0.85, hspace=0.15, wspace=0.15)
def plot_normals_explanation(algorithm, scene, fs=14, subdir="overview"): # prepare figure rows, cols = 1, 4 fig = plt.figure(figsize=(10, 4)) grid, cb_height, cb_width = plotting.get_grid_with_colorbar( rows, cols, scene) # prepare metrics normals_contin = MAEContinSurf() normals_planes = MAEPlanes() # prepare data gt = scene.get_gt() algo_result = misc.get_algo_result(algorithm, scene) mask = normals_contin.get_evaluation_mask( scene) + normals_planes.get_evaluation_mask(scene) score_normals, vis_normals = normals_contin.get_score_from_mask( algo_result, gt, scene, mask, with_visualization=True) # plot ground truth normals plt.subplot(grid[0]) plt.imshow(scene.get_normal_vis_from_disp_map(gt)) plt.title("Ground Truth Normals", fontsize=fs) # plot algorithm normals plt.subplot(grid[1]) plt.imshow(scene.get_normal_vis_from_disp_map(algo_result)) plt.title("Algorithm Normals", fontsize=fs) # plot median angular error with colorbar plt.subplot(grid[2]) cb = plt.imshow(vis_normals, **settings.metric_args(normals_contin)) plt.title("Median Angular Error: %0.1f" % score_normals, fontsize=fs) plt.subplot(grid[3]) plotting.add_colorbar(grid[3], cb, cb_height, cb_width, colorbar_bins=4, fontsize=fs) # save figure fig_name = "metrics_%s_%s" % (scene.get_name(), algorithm.get_name()) fig_path = plotting.get_path_to_figure(fig_name, subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=False, hspace=0.04, wspace=0.03)
def plot_error_vs_noise(self, algorithms, subdir="stratified"): self.set_low_gt_scale() fig = plt.figure(figsize=(8, 4)) grid = self.get_boxes() box_ids = sorted(list(np.unique(grid))) box_ids.remove(0) n_boxes = len(box_ids) mse = MSE() gt = self.get_gt() m_basic = self.get_boundary_mask() m_eval = self.get_background_mask() * m_basic x_values = np.arange(1, n_boxes + 1) for algorithm in algorithms: algo_result = misc.get_algo_result(algorithm, self) y_values = np.full(n_boxes, fill_value=np.nan) for idx_b, box_id in enumerate(box_ids): m_current = m_eval * (grid == box_id) y_values[idx_b] = mse.get_masked_score(algo_result, gt, m_current) plt.plot(x_values, y_values, "o-", color=algorithm.get_color(), label=algorithm.get_display_name(), lw=2, alpha=0.9, markeredgewidth=0) plt.legend(frameon=False, loc="upper right", ncol=1, title="Algorithms:", bbox_to_anchor=(1.25, 1), borderaxespad=0.0) plt.xlabel("Cell IDs (increasing noise from left to right)") plt.ylabel("MSE on cell background") plt.title("%s: Error per Cell Background" % (self.get_display_name())) plotting.hide_upper_right() fig_path = plotting.get_path_to_figure("dots_per_box", subdir=subdir) plotting.save_tight_figure(fig, fig_path, remove_ticks=False)
def get_bad_count(scene, algorithms, thresh, percentage=False): bad_count = np.zeros(scene.get_shape()) gt = scene.get_gt() for algorithm in algorithms: algo_result = misc.get_algo_result(algorithm, scene) abs_diffs = np.abs(gt - algo_result) with np.errstate(invalid="ignore"): bad = abs_diffs > thresh bad += misc.get_mask_invalid(abs_diffs) bad_count += bad if percentage: bad_count = misc.percentage(len(algorithms), bad_count) return bad_count
def plot_metric_rows(self, grids, algorithms, metrics, offset, fontsize): gt = self.get_gt() center_view = self.get_center_view() for idx_a, algorithm in enumerate(algorithms): log.info("Algorithm: %s" % algorithm) algo_result = misc.get_algo_result(algorithm, self) # add algorithm disparity map plt.sca(grids[0][idx_a + 1]) cm = plt.imshow(algo_result, **settings.disp_map_args(self)) plt.title(algorithm.get_display_name(), fontsize=fontsize) # add colorbar to last disparity map in row if idx_a == (len(algorithms) - 1): plotting.create_colorbar(cm, cax=grids[0].cbar_axes[0], colorbar_bins=7, fontsize=fontsize) # add algorithm metric visualizations for idx_m, metric in enumerate(metrics): log.info(metric.get_display_name()) mask = metric.get_evaluation_mask(self) plt.sca(grids[idx_m + offset + 1][idx_a + 1]) cm = self.plot_algo_vis_for_metric(metric, algo_result, gt, mask, self.hidden_gt(), fontsize) # add colorbar to last metric visualization in row if idx_a == len(algorithms) - 1: plotting.create_colorbar(cm, cax=grids[idx_m + offset + 1].cbar_axes[0], colorbar_bins=metric.colorbar_bins, fontsize=fontsize) # add mask visualizations as 1st column if idx_a == 0: plt.sca(grids[idx_m + offset + 1][0]) plotting.plot_img_with_transparent_mask(center_view, mask, alpha=0.7, color=settings.MASK_COLOR) plt.ylabel(metric.get_short_name(), fontsize=fontsize) plt.title("Region Mask", fontsize=fontsize)
def compute_scores(algorithms, scenes, thresholds=THRESHOLDS, penalize_missing_pixels=True): percentages_algo_thresh = np.full((len(algorithms), len(thresholds)), fill_value=np.nan) bad_pix_metric = BadPix() max_diff = np.max(thresholds) for idx_a, algorithm in enumerate(algorithms): combined_diffs = np.full(0, fill_value=np.nan) log.info('Computing BadPix scores for: %s' % algorithm.get_display_name()) for scene in scenes: gt = scene.get_gt() algo_result = misc.get_algo_result(algorithm, scene) diffs = np.abs(algo_result - gt) mask_valid = misc.get_mask_valid( algo_result) * misc.get_mask_valid(diffs) mask_eval = bad_pix_metric.get_evaluation_mask(scene) if penalize_missing_pixels: # penalize all invalid algorithm pixels with maximum error diffs[~mask_valid] = max_diff + 100 diffs = diffs[mask_eval] else: diffs = diffs[mask_eval * mask_valid] combined_diffs = np.concatenate((combined_diffs, diffs)) # compute BadPix score for each threshold for idx_t, t in enumerate(thresholds): bad_pix_metric.thresh = t bad_pix_score = bad_pix_metric.get_score_from_diffs(combined_diffs) percentages_algo_thresh[idx_a, idx_t] = 100 - bad_pix_score return percentages_algo_thresh
def plot_discont_overview(algorithms, scene, n_rows=2, fs=15, subdir="overview", xmin=150, ymin=230, ww=250): # prepare figure grid n_vis_types = 2 n_entries_per_row = int(np.ceil((len(algorithms) + 1) / float(n_rows))) rows, cols = (n_vis_types * n_rows), n_entries_per_row + 1 fig = plt.figure(figsize=(cols * 1.7, 1.45 * rows * 1.5)) grid, cb_height, cb_width = plotting.get_grid_with_colorbar( rows, cols, scene) colorbar_args = { "height": cb_height, "width": cb_width, "colorbar_bins": 7, "fontsize": fs } # prepare data median_algo = PerPixMedianDiff() gt = scene.get_gt() median_result = misc.get_algo_result(median_algo, scene) center_view = scene.get_center_view() # center view plt.subplot(grid[0]) plt.imshow(center_view[ymin:ymin + ww, xmin:xmin + ww]) plt.title("Center View", fontsize=fs) plt.ylabel("DispMap", fontsize=fs) plt.subplot(grid[cols]) plt.ylabel("MedianDiff", fontsize=fs) for idx_a, algorithm in enumerate(algorithms): algo_result = misc.get_algo_result(algorithm, scene) idx = idx_a + 1 add_ylabel = not idx % n_entries_per_row # is first column add_colorbar = not (idx + 1) % n_entries_per_row # is last column idx_row = (idx / n_entries_per_row) * n_vis_types idx_col = idx % n_entries_per_row idx = idx_row * cols + idx_col # top row with algorithm disparity map plt.subplot(grid[idx]) algo_result_crop = algo_result[ymin:ymin + ww, xmin:xmin + ww] cb_depth = plt.imshow(algo_result_crop, **settings.disp_map_args(scene)) plt.title(algorithm.get_display_name(), fontsize=fs) if add_ylabel: plt.ylabel("DispMap", fontsize=fs) if add_colorbar: plotting.add_colorbar(grid[idx + 1], cb_depth, **colorbar_args) # second row with median diff plt.subplot(grid[idx + cols]) diff = (np.abs(median_result - gt) - np.abs(algo_result - gt))[ymin:ymin + ww, xmin:xmin + ww] cb_error = plt.imshow(diff, interpolation="none", cmap=cm.RdYlGn, vmin=-.05, vmax=.05) if add_ylabel: plt.ylabel("MedianDiff", fontsize=fs) if add_colorbar: plotting.add_colorbar(grid[idx + cols + 1], cb_error, **colorbar_args) fig_path = plotting.get_path_to_figure("discont_%s" % scene.get_name(), subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=True, hspace=0.03, wspace=0.03, dpi=100)
def plot_normals(algorithms, scenes, n_rows=2, subdir=SUBDIR, fs=15): # prepare figure grid n_vis_types = 3 n_entries_per_row = int(np.ceil((len(algorithms) + 1) / float(n_rows))) rows, cols = (n_vis_types * n_rows), n_entries_per_row + 1 # initialize metrics metric_mae_contin = MAEContinSurf() metric_mae_planes = MAEPlanes() for scene in scenes: h, w = scene.get_shape() # prepare figure and colorbar size fig = plt.figure(figsize=(cols * 1.7, 1.45 * rows * 1.5)) grid, cb_height, cb_width = plotting.get_grid_with_colorbar( rows, cols, scene) colorbar_args = { "height": cb_height, "width": cb_width, "colorbar_bins": 7, "fontsize": fs } # some scenes have no evaluation mask for planar, non-planar or both surfaces try: mask_contin = metric_mae_contin.get_evaluation_mask(scene) except IOError: log.warning("No evaluation mask found for non-planar " "continuous surfaces on: %s" % scene.get_display_name()) mask_contin = np.zeros((h, w), dtype=np.bool) try: mask_planes = metric_mae_planes.get_evaluation_mask(scene) except IOError: log.warning("No evaluation mask found for planar " "continuous surfaces on: %s" % scene.get_display_name()) mask_planes = np.zeros((h, w), dtype=np.bool) # plot ground truth column gt = scene.get_gt() _plot_normals_entry(scene, gt, gt, mask_planes, mask_contin, "GT", metric_mae_contin, metric_mae_planes, 0, grid, n_entries_per_row, n_vis_types, cols, colorbar_args, fs=fs) # plot algorithm columns for idx_a, algorithm in enumerate(algorithms): algo_result = misc.get_algo_result(algorithm, scene) _plot_normals_entry(scene, algo_result, gt, mask_planes, mask_contin, algorithm.get_display_name(), metric_mae_contin, metric_mae_planes, idx_a + 1, grid, n_entries_per_row, n_vis_types, cols, colorbar_args, fs=fs) plt.suptitle("Angular Error: non-planar / planar surfaces", fontsize=fs) # save figure fig_path = plotting.get_path_to_figure("normals_%s" % scene.get_name(), subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=True, hspace=0.03, wspace=0.03)
def plot_general_overview(algorithms, scenes, metrics, fig_name=None, subdir=SUBDIR, fs=11): n_vis_types = len(metrics) # prepare figure grid rows, cols = len(scenes) * n_vis_types, len(algorithms) + 1 fig = plt.figure(figsize=(cols * 1.4, 1.15 * rows * 1.6)) grid, cb_height, cb_width = plotting.get_grid_with_colorbar( rows, cols, scenes[0]) for idx_s, scene in enumerate(scenes): gt = scene.get_gt() applicable_metrics = scene.get_applicable_metrics(metrics) for idx_a, algorithm in enumerate(algorithms): algo_result = misc.get_algo_result(algorithm, scene) for idx_m, metric in enumerate(metrics): idx = (n_vis_types * idx_s + idx_m) * cols + idx_a ylabel = metric.get_display_name() plt.subplot(grid[idx]) if metric in applicable_metrics: score, vis = metric.get_score(algo_result, gt, scene, with_visualization=True) cb = plt.imshow(vis, **settings.metric_args(metric)) # add algorithm name and metric score on top row if idx_s == 0 and idx_m == 0: plt.title("%s\n%0.2f" % (algorithm.get_display_name(), score), fontsize=fs) else: plt.title("%0.2f" % score, fontsize=fs) # add colorbar to last column if idx_a == len(algorithms) - 1: plotting.add_colorbar( grid[idx + 1], cb, cb_height, cb_width, colorbar_bins=metric.colorbar_bins, fontsize=fs) # add metric name to first column if idx_a == 0: plt.ylabel(ylabel) else: if idx_a == 0: log.warning("Metric %s not applicable for scene %s." % (metric.get_display_name(), scene.get_display_name())) plt.ylabel(ylabel + "\n(not applicable)") # save figure if fig_name is None: fig_name = "metric_overview_%s_%s" % ("_".join( metric.get_id() for metric in metrics), "_".join(scene.get_name() for scene in scenes)) fig_path = plotting.get_path_to_figure(fig_name, subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=True, hspace=0.01, wspace=0.01)
def plot_algo_disp_vs_gt_disp(self, algorithms, subdir="stratified"): self.set_low_gt_scale() # prepare data gt = self.get_gt() m_eval = self.get_boundary_mask() mask_names = ["Sphere In", "Sphere Out"] masks = [self.get_sphere_in()*m_eval, self.get_sphere_out()*m_eval] factor = 1000.0 gt_rounded = np.asarray(gt * factor, dtype=np.int) disp_values = np.unique(gt_rounded) n_values = np.size(disp_values) # prepare figure fig = plt.figure(figsize=(14, 6)) rows, cols = 1, 2 fontsize = 14 legend_lines = [] legend_labels = [] for algorithm in algorithms: algo_result = misc.get_algo_result(algorithm, self) # go through ground truth disparity values for idx_d in range(n_values): current_disp = disp_values[idx_d] m_disp = (gt_rounded == current_disp) # find median disparity of algorithm result at image regions # of given ground truth disparity value for idx_m, (mask, mask_name) in enumerate(zip(masks, mask_names)): algo_disps = algo_result[m_disp * mask] if np.size(algo_disps) > 0: median = np.median(algo_disps) plt.subplot(rows, cols, idx_m+1) s = plt.scatter(current_disp/factor, median, marker="o", c=algorithm.get_color(), alpha=0.8, s=5, lw=0) legend_lines.append(s) legend_labels.append(algorithm.get_display_name()) # finalize figure attributes for idx_m, (mask, mask_name) in enumerate(zip(masks, mask_names)): plt.subplot(rows, cols, idx_m+1) vmin = np.min(gt_rounded[mask]) / factor vmax = np.max(gt_rounded[mask]) / factor plt.xlim([vmin, vmax]) plt.ylim([vmin, vmax]) plt.xlabel("Ground truth disparities", fontsize=fontsize) plt.ylabel("Algorithm disparities", fontsize=fontsize) plt.title(mask_name, fontsize=fontsize) plotting.hide_upper_right() legend = plt.legend(legend_lines, legend_labels, frameon=False, ncol=1, scatterpoints=1, title="Algorithms:", bbox_to_anchor=(1.25, .85), borderaxespad=0.0) for idx in range(len(legend.legendHandles)): legend.legendHandles[idx]._sizes = [22] plt.suptitle("Ground Truth Disparities vs. Algorithm Disparities", fontsize=fontsize) fig_path = plotting.get_path_to_figure("pyramids_disp_disp", subdir=subdir) plotting.save_tight_figure(fig, fig_path, remove_ticks=False, hspace=0.2, wspace=0.3, padding_top=0.88)
def plot(algorithms, scenes, meta_algo, subdir="meta_algo_comparisons", fig_name=None, with_gt_row=False, fs=12): # prepare figure rows, cols = len(algorithms) + int(with_gt_row), len(scenes) * 3 + 1 fig = plt.figure(figsize=(cols * 1.3, rows * 1.5)) grid, cb_height, cb_width = plotting.get_grid_with_colorbar( rows, cols, scenes[0]) colorbar_args = { "height": cb_height * 0.8, "width": cb_width, "colorbar_bins": 4, "fontsize": fs } for idx_s, scene in enumerate(scenes): gt = scene.get_gt() meta_algo_result = misc.get_algo_result(meta_algo, scene) add_label = idx_s == 0 # is first column add_colorbar = idx_s == len(scenes) - 1 # is last column # plot one row per algorithm for idx_a, algorithm in enumerate(algorithms): algo_result = misc.get_algo_result(algorithm, scene) add_title = idx_a == 0 # is top row idx = idx_a * cols + 3 * idx_s # disparity map plt.subplot(grid[idx]) plt.imshow(algo_result, **settings.disp_map_args(scene)) if add_title: plt.title("DispMap", fontsize=fs) if add_label: plt.ylabel(algorithm.get_display_name(), fontsize=fs) # error map: gt - algo plt.subplot(grid[idx + 1]) cb1 = plt.imshow(gt - algo_result, **settings.diff_map_args(vmin=-.1, vmax=.1)) if add_title: plt.title("GT-Algo", fontsize=fs) # error map: |meta-gt| - |algo-gt| plt.subplot(grid[idx + 2]) median_diff = np.abs(meta_algo_result - gt) - np.abs(algo_result - gt) cb2 = plt.imshow(median_diff, interpolation="none", cmap=cm.RdYlGn, vmin=-.05, vmax=.05) if add_title: plt.title(meta_algo.get_display_name().replace("PerPix", ""), fontsize=fs) if add_colorbar: if idx_a % 2 == 0: plotting.add_colorbar(grid[idx + 3], cb1, **colorbar_args) else: plotting.add_colorbar(grid[idx + 3], cb2, **colorbar_args) if with_gt_row: idx = len(algorithms) * cols + 3 * idx_s plt.subplot(grid[idx]) plt.imshow(gt, **settings.disp_map_args(scene)) plt.xlabel("GT", fontsize=fs) if add_label: plt.ylabel("Reference") plt.subplot(grid[idx + 1]) cb1 = plt.imshow(np.abs(gt - meta_algo_result), **settings.abs_diff_map_args()) plt.xlabel("|GT-%s|" % meta_algo.get_display_name(), fontsize=fs - 2) if add_colorbar: plotting.add_colorbar(grid[idx + 3], cb1, **colorbar_args) if fig_name is None: scene_names = "_".join(s.get_name() for s in scenes) fig_name = "%s_comparison_%s" % (meta_algo.get_name(), scene_names) fig_path = plotting.get_path_to_figure(fig_name, subdir=subdir) plotting.save_tight_figure(fig, fig_path, hide_frames=True, hspace=0.02, wspace=0.0)
def plot_algo_overview(self, algorithms, with_metric_vis=True, subdir="algo_overview", fs=14): self.set_scale_for_algo_overview() metrics = self.get_scene_specific_metrics() n_metrics = len(metrics) if not with_metric_vis: rows, cols = 2 + n_metrics, len(algorithms) + 2 fig = plt.figure(figsize=(2.6 * len(algorithms), 4.9)) offset = 0 else: rows, cols = 2 + 2 * n_metrics, len(algorithms) + 2 fig = plt.figure(figsize=(2.6 * len(algorithms), rows + 3)) offset = n_metrics labelpad = -15 hscale, wscale = 7, 5 width_ratios = [wscale] * (len(algorithms) + 1) + [1] height_ratios = [hscale] * (rows - n_metrics) + [1] * n_metrics gs = gridspec.GridSpec(rows, cols, height_ratios=height_ratios, width_ratios=width_ratios) gt = self.get_gt() dummy = np.ones((self.get_height() / hscale, self.get_width())) cb_height, w = np.shape(gt) cb_width = w / float(wscale) # first column (gt, center view, ...) plt.subplot(gs[0]) plt.imshow(gt, **settings.disp_map_args(self)) plt.title("Ground Truth", fontsize=fs) plt.ylabel("Disparity Map", fontsize=fs) plt.subplot(gs[cols]) plt.imshow(self.get_center_view()) plt.ylabel("diff: GT - Algo", fontsize=fs) for idx_m, metric in enumerate(metrics): plt.subplot(gs[(2 + idx_m + offset) * cols]) plt.xlabel(metric.get_short_name(), labelpad=labelpad, fontsize=fs) plt.imshow(dummy, cmap="gray_r") # algorithm columns for idx_a, algorithm in enumerate(algorithms): log.info("Processing algorithm: %s" % algorithm) algo_result = misc.get_algo_result(algorithm, self) # algorithm disparities plt.subplot(gs[idx_a + 1]) plt.title(algorithm.get_display_name(), fontsize=fs) cm1 = plt.imshow(algo_result, **settings.disp_map_args(self)) # algorithm diff map plt.subplot(gs[cols + idx_a + 1]) cm2 = plt.imshow(gt - algo_result, **settings.diff_map_args()) # add colorbar if last column if idx_a == (len(algorithms) - 1): plotting.add_colorbar(gs[idx_a + 2], cm1, cb_height, cb_width, colorbar_bins=5, fontsize=fs - 4) plotting.add_colorbar(gs[cols + idx_a + 2], cm2, cb_height, cb_width, colorbar_bins=5, fontsize=fs - 4) # score and background color for metrics for idx_m, metric in enumerate(metrics): if with_metric_vis: plt.subplot(gs[(2 + idx_m) * cols + idx_a + 1]) score, vis = metric.get_score(algo_result, gt, self, with_visualization=True) cm3 = plt.imshow(vis, **settings.metric_args(metric)) if idx_a == 0: plt.ylabel(metric.get_short_name(), fontsize=fs) elif idx_a == (len(algorithms) - 1): plotting.add_colorbar( gs[(2 + idx_m) * cols + idx_a + 2], cm3, cb_height, cb_width, colorbar_bins=metric.colorbar_bins, fontsize=fs - 4) else: score = metric.get_score(algo_result, gt, self) plt.subplot(gs[(2 + idx_m + offset) * cols + idx_a + 1]) plt.imshow( dummy * score, **settings.score_color_args(vmin=metric.vmin, vmax=metric.vmax)) plt.xlabel(metric.format_score(score), labelpad=labelpad, fontsize=fs) fig_name = "algo_overview_" + self.get_name( ) + with_metric_vis * "_vis" fig_path = plotting.get_path_to_figure(fig_name, subdir=subdir) plotting.save_tight_figure(fig, fig_path, wspace=0.04, hide_frames=True)