def main(): args = parse_args() if args.seed is not None: print(f'Set random seed to {args.seed}') set_random_seed(args.seed) if args.format == 'rawframes': frame_info = parse_directory(args.src_folder, rgb_prefix=args.rgb_prefix, flow_x_prefix=args.flow_x_prefix, flow_y_prefix=args.flow_y_prefix, level=args.level) elif args.format == 'videos': if args.level == 1: # search for one-level directory video_list = glob.glob(osp.join(args.src_folder, '*')) elif args.level == 2: # search for two-level directory video_list = glob.glob(osp.join(args.src_folder, '*', '*')) else: raise ValueError(f'level must be 1 or 2, but got {args.level}') frame_info = {} for video in video_list: video_path = osp.relpath(video, args.src_folder) # video_id: (video_relative_path, -1, -1) frame_info[osp.splitext(video_path)[0]] = (video_path, -1, -1) else: raise NotImplementedError('only rawframes and videos are supported') if args.dataset == 'ucf101': splits = parse_ucf101_splits(args.level) elif args.dataset == 'sthv1': splits = parse_sthv1_splits(args.level) elif args.dataset == 'sthv2': splits = parse_sthv2_splits(args.level) elif args.dataset == 'mit': splits = parse_mit_splits() elif args.dataset == 'mmit': splits = parse_mmit_splits() elif args.dataset in ['kinetics400', 'kinetics600', 'kinetics700']: splits = parse_kinetics_splits(args.level, args.dataset) elif args.dataset == 'hmdb51': splits = parse_hmdb51_split(args.level) elif args.dataset == 'jester': splits = parse_jester_splits(args.level) elif args.dataset == 'diving48': splits = parse_diving48_splits() else: raise ValueError( f"Supported datasets are 'ucf101, sthv1, sthv2', 'jester', " f"'mmit', 'mit', 'kinetics400', 'kinetics600', 'kinetics700', but " f'got {args.dataset}') assert len(splits) == args.num_split out_path = args.out_root_path + args.dataset if len(splits) > 1: for i, split in enumerate(splits): file_lists = build_file_list(split, frame_info, shuffle=args.shuffle) train_name = f'{args.dataset}_train_split_{i+1}_{args.format}.txt' val_name = f'{args.dataset}_val_split_{i+1}_{args.format}.txt' if args.output_format == 'txt': with open(osp.join(out_path, train_name), 'w') as f: f.writelines(file_lists[0][0]) with open(osp.join(out_path, val_name), 'w') as f: f.writelines(file_lists[0][1]) elif args.output_format == 'json': train_list = lines2dictlist(file_lists[0][0], args.format) val_list = lines2dictlist(file_lists[0][1], args.format) train_name = train_name.replace('.txt', '.json') val_name = val_name.replace('.txt', '.json') with open(osp.join(out_path, train_name), 'w') as f: json.dump(train_list, f) with open(osp.join(out_path, val_name), 'w') as f: json.dump(val_list, f) else: lists = build_file_list(splits[0], frame_info, shuffle=args.shuffle) if args.subset == 'train': ind = 0 elif args.subset == 'val': ind = 1 elif args.subset == 'test': ind = 2 else: raise ValueError(f"subset must be in ['train', 'val', 'test'], " f'but got {args.subset}.') filename = f'{args.dataset}_{args.subset}_list_{args.format}.txt' if args.output_format == 'txt': with open(osp.join(out_path, filename), 'w') as f: f.writelines(lists[0][ind]) elif args.output_format == 'json': data_list = lines2dictlist(lists[0][ind], args.format) filename = filename.replace('.txt', '.json') with open(osp.join(out_path, filename), 'w') as f: json.dump(data_list, f)
def main(): args = parse_args() if args.level == 2: # search for two-level directory def key_func(x): return '/'.join(x.split('/')[-2:]) else: # Only search for one-level directory def key_func(x): return x.split('/')[-1] if args.format == 'rawframes': frame_info = parse_directory(args.src_folder, key_func=key_func, rgb_prefix=args.rgb_prefix, flow_x_prefix=args.flow_x_prefix, flow_y_prefix=args.flow_y_prefix, level=args.level) elif args.format == 'videos': if args.level == 1: # search for one-level directory video_list = glob.glob(osp.join(args.src_folder, '*')) elif args.level == 2: # search for two-level directory video_list = glob.glob(osp.join(args.src_folder, '*', '*')) else: raise ValueError(f'level must be 1 or 2, but got {args.level}') frame_info = {} for video in video_list: video_path = osp.relpath(video, args.src_folder) # video_id: (video_relative_path, -1, -1) frame_info['.'.join(video_path.split('.')[:-1])] = (video_path, -1, -1) else: raise NotImplementedError('only rawframes and videos are supported') if args.dataset == 'ucf101': splits = parse_ucf101_splits(args.level) elif args.dataset == 'sthv1': splits = parse_sthv1_splits(args.level) elif args.dataset == 'sthv2': splits = parse_sthv2_splits(args.level) elif args.dataset == 'mit': splits = parse_mit_splits(args.level) elif args.dataset == 'mmit': splits = parse_mmit_splits(args.level) elif args.dataset == 'kinetics400': splits = parse_kinetics_splits(args.level) else: raise ValueError( f"Supported datasets are 'ucf101, sthv1, sthv2'," f"'mmit', 'mit', 'kinetics400' but got {args.dataset}") assert len(splits) == args.num_split out_path = args.out_root_path + args.dataset if len(splits) > 1: for i, split in enumerate(splits): file_lists = build_file_list(split, frame_info, shuffle=args.shuffle) filename = f'{args.dataset}_train_split_{i+1}_{args.format}.txt' with open(osp.join(out_path, filename), 'w') as f: f.writelines(file_lists[0][0]) filename = f'{args.dataset}_val_split_{i+1}_{args.format}.txt' with open(osp.join(out_path, filename), 'w') as f: f.writelines(file_lists[0][1]) else: lists = build_file_list(splits[0], frame_info, shuffle=args.shuffle) filename = f'{args.dataset}_{args.subset}_list_{args.format}.txt' if args.subset == 'train': ind = 0 elif args.subset == 'val': ind = 1 elif args.subset == 'test': ind = 2 else: raise ValueError(f"subset must be in ['train', 'val', 'test'], " f'but got {args.subset}.') with open(osp.join(out_path, filename), 'w') as f: f.writelines(lists[0][ind])