def build_helper(gz, args): return DataHelper(args.training_samples, gz=gz, config=args)
for i, l in enumerate(total_train_loss): print("Avg-LOSS{}/batch/step: {}".format(i, l / VERBOSE_STEP)) total_train_loss = [0] * 5 if __name__ == "__main__": parser = argparse.ArgumentParser() args = set_config() args.n_gpu = torch.cuda.device_count() if args.seed == 0: args.seed = random.randint(0, 100) set_seed(args) helper = DataHelper(gz=True, config=args) args.n_type = helper.n_type # 2 # Set datasets Full_Loader = helper.train_loader # Subset_Loader = helper.train_sub_loader dev_example_dict = helper.dev_example_dict dev_feature_dict = helper.dev_feature_dict eval_dataset = helper.dev_loader roberta_config = BC.from_pretrained(args.bert_model) encoder = BertModel.from_pretrained(args.bert_model) args.input_dim = roberta_config.hidden_size model = BertSupportNet(config=args, encoder=encoder) if args.trained_weight is not None: model.load_state_dict(torch.load(args.trained_weight))