示例#1
0
        lines= [x.decode() for x in lines]

    refseq= lines[1].strip()

    kmer_dict= fasta_get_freq(refseq,start= 0,end= 0,step= 1,ksize=ksize,bases= bases)

    ref_kmer_prop =kmer_freq_balance(kmer_dict,mutations,fasta_len= len(refseq))
    
    return ref_kmer_prop


ksize= 3
#bases= 'ATCG'
bases= 'ACGT'

mutations= get_mutations(bases= bases,ksize= ksize)
kmers, kmer_idx= kmer_comp_index(mutations)

mut_lib= kmer_mut_index(mutations)


from tools.mcounter_tools import read_args

p_value= 1e-5
test_m= 'chi2'
individually= False
exclude= False
frequency_range= [0,1]
extract= 'pval'
Nbins= 100
tag_ref= '_ss'
示例#2
0
def vcf_muts_matrix_v1(refseq,summary,start= 0,end= 0,ksize= 3,bases='ATCG', collapse= True):
    ''' 
    Return matrix of mutation contexts by SNP in genotype array
    Each mutation is mapped to list of possible mutations as a binary vector.
    - v1 determines if alternative allele = reference allele in fasta. 
        if so, allele is switched, position idx is flagged. 
    '''
    
    mutations= get_mutations(bases= bases,ksize= ksize)
    kmers, kmer_idx= kmer_comp_index(mutations)
    
    mut_lib= kmer_mut_index(mutations)
    
    if end == 0:
        end= max(summary.POS)
    
    k5= int(ksize/2)
    k3= ksize - k5
    pos_mut= []
    flag_reverse= []
    flag_remove= []
    
    for x in range(summary.shape[0]):
        pos= int(summary.POS[x]) - 1
        if pos >=  start and pos <= end:
            kmer= refseq[pos-k5: pos + k3]
            if 'N' in kmer:
                flag_remove.append(x)
                continue
            mut= kmer + summary.ALT[x]
            
            if kmer[1] == summary.ALT[x]:
                flag_reverse.append(x)
                mut= kmer+summary.REF[x]
            
            if len(mut) != 4: 
                print(kmer)
                print(summary.REF[x],summary.ALT[x])
                print(x,pos)
                print(len(refseq),summary.shape[0])
                if collapse:
                    mut_array=np.zeros(len(kmer_idx))
                    pos_mut.append(mut_array)
                    continue
                else:
                    mut_array=np.zeros(len(mutations))
                    pos_mut.append(mut_array)
                    continue
            if collapse:
                mut_index= kmers[mut]
                mut_array=np.zeros(len(kmer_idx))
            else:
                mut_index= get_by_path(mut_lib, list(mut))
                mut_array=np.zeros(len(mutations))
            
            mut_array[mut_index]= 1
            pos_mut.append(mut_array)
    
    pos_mut= np.array(pos_mut).T
    
    return pos_mut, flag_reverse, flag_remove
示例#3
0
def MC_sample_matrix_stdlone(sim,
                             out_db='out_db.txt',
                             min_size=80,
                             samp=[5, 20, 10],
                             stepup="increment",
                             diffs=False,
                             frequency_range=[0, 1],
                             indfile='ind_assignments.txt',
                             outemp='ind_assignments{}.txt',
                             chrom_idx=0,
                             prop_gen_used=1,
                             sim_dir='mutation_counter/data/sims/',
                             segregating=False,
                             scale_genSize=False,
                             outlog='indy.log',
                             row=24,
                             col=4,
                             single=False,
                             exclude=False,
                             print_summ=False,
                             sample_sim=0,
                             collapsed=True,
                             bases='ACGT',
                             ksize=3,
                             ploidy=2,
                             freq_extract=False,
                             sim_del='C',
                             tag_sim='_ss',
                             genome_size=1,
                             haps_extract=False,
                             return_private=True):
    '''

	'''
    ti = time.time()

    ## chromosome
    chrom = sim.split('.')[chrom_idx].split(sim_del)[-1].strip('chr')
    pop_dict, inds = get_pop_dict(sim,
                                  dir_sim=sim_dir,
                                  indfile=indfile,
                                  haps_extract=haps_extract,
                                  return_inds=True)
    if haps_extract:
        inds = list(inds) + list(inds)
        inds = np.array(inds)

    print(len(inds))
    print(inds[:10])

    total_inds = sum([len(x) for x in pop_dict.values()])

    if exclude:
        files = read_exclude()
    else:
        files = {}

    data_kmer = {}
    tags = []
    sim_extend = []
    chroms = []

    ### read vcf
    t0 = time.time()
    Window, mut_matrix, scale = VCF_read_filter(sim,
                                                sim_dir=sim_dir,
                                                chrom=chrom,
                                                haps_extract=haps_extract,
                                                scale_genSize=scale_genSize,
                                                collapsed=collapsed,
                                                min_size=min_size,
                                                samp=samp,
                                                stepup=stepup,
                                                outemp=outemp,
                                                indfile=indfile,
                                                diffs=diffs,
                                                bases=bases,
                                                ksize=ksize,
                                                ploidy=ploidy)

    #pop_dict= ()
    #total_inds= sum([len(x) for x in pop_dict.values()])

    t1 = time.time()
    read_time = t1 - t0
    if not len(Window) or Window.shape[0] < total_inds:
        return ''

    ## counts for no tag sim:
    s0 = time.time()
    pop_summary, PA_dict = count_popKmers(Window,
                                          mut_matrix,
                                          pop_dict,
                                          single=single,
                                          prop_gen_used=prop_gen_used,
                                          frequency_range=frequency_range,
                                          row=row,
                                          col=col,
                                          segregating=segregating,
                                          scale=scale,
                                          return_private=return_private)

    t2 = time.time()
    print('time elapsed ref: {} m'.format((t2 - t1) / 60))

    if return_private:
        pop_summary, dummy = count_popKmers(Window,
                                            mut_matrix,
                                            pop_dict,
                                            single=single,
                                            prop_gen_used=prop_gen_used,
                                            frequency_range=frequency_range,
                                            row=row,
                                            col=col,
                                            segregating=segregating,
                                            scale=scale,
                                            PA=PA_dict)
        data_kmer[sim] = pop_summary

    t3 = time.time()
    print('time elapsed ref PA: {} m'.format((t3 - t2) / 60))

    new_wind = []
    for pop in data_kmer[sim]['counts'].keys():

        pop_counts = pop_summary['array'][pop_dict[pop], :]
        pop_counts = np.array(pop_counts, dtype=int)
        Service = np.zeros((pop_counts.shape[0], pop_counts.shape[1] + 3),
                           dtype=int)

        Service[:, 3:] = pop_counts

        Service = np.array(Service, dtype=str)
        Service[:, 2] = inds[pop_dict[pop]]
        Service[:, 1] = pop
        Service[:, 0] = sim
        new_wind.append(Service)

    new_wind = np.concatenate(tuple(new_wind), axis=0)

    ### mutation labels
    mutations = get_mutations(bases=bases, ksize=ksize)
    kmers, kmer_idx = kmer_comp_index(mutations)

    mut_lib = kmer_mut_index(mutations)
    if collapsed:
        labels = [kmer_idx[x][0] for x in sorted(kmer_idx.keys())]

    else:
        labels = ['_'.join(x) for x in mutations]

    # write:
    db_file = out_db.format(sim)
    db_neigh = db_file.split('/')[:-1]
    db_name = db_file.split('/')[-1]
    db_neigh = os.listdir('/'.join(db_neigh))

    header = ['SIM', 'POP', 'N'] + labels
    header = '\t'.join(header) + '\n'

    if db_name not in db_neigh:
        with open(db_file, 'w') as fp:
            fp.write(header)

    with open(db_file, 'w') as fp:
        fp.write(header)
        fp.write('\n'.join(['\t'.join(x) for x in new_wind]))

    t1 = time.time()
    count_time = t1 - t0

    return ''
示例#4
0
def MC_sample_matrix_stdlone(sim,out_db= 'out_db.txt',min_size= 80, samp= [5,20,10], stepup= "increment", diffs= False, frequency_range= [0,1],indfile= 'ind_assignments.txt', 
					outemp= 'ind_assignments{}.txt',chrom_idx= 0, prop_gen_used= 1, 
	                sim_dir= 'mutation_counter/data/sims/', segregating= False, scale_genSize= False,
	                outlog= 'indy.log', row= 24,col= 4, single= True, exclude= False, print_summ= False, sample_sim= 0,
	                collapsed= True,bases= 'ACGT',ksize= 3,ploidy= 2, freq_extract= False, sim_del= 'C', tag_sim= '_ss',
	                genome_size= 1,haps_extract= False, return_private= True):
	'''

	'''

	### prepare sim_specific db
	###
	### mutation labels
	mutations= get_mutations(bases= bases,ksize= ksize)
	kmers, kmer_idx= kmer_comp_index(mutations)

	mut_lib= kmer_mut_index(mutations)
	if collapsed:
	    labels= [kmer_idx[x][0] for x in sorted(kmer_idx.keys())]

	else:
	    labels= ['_'.join(x) for x in mutations]

	# write:
	out_db= out_db.format(sim)
	db_dir= out_db.split('/')
	db_name= db_dir[-1]
	db_dir= '/'.join(db_dir[:-1])+'/'
	db_neigh= os.listdir(db_dir)

	header= ['SIM','POP','N'] + labels
	header= '\t'.join(header) + '\n'

	if db_name not in db_neigh:
	    with open(out_db,'w') as fp:
	        fp.write(header)
	###
	###
	ti= time.time()

	## chromosome
	chrom= sim.split('.')[chrom_idx].split(sim_del)[-1].strip('chr')
	pop_dict, inds= get_pop_dict(sim,dir_sim= sim_dir,indfile= indfile,haps_extract= haps_extract,
		return_inds= True)
	if haps_extract:
		inds= list(inds) + list(inds)
		inds= np.array(inds)

	print(len(inds))
	print(inds[:10])

	total_inds= sum([len(x) for x in pop_dict.values()])

	if exclude:
	    files= read_exclude()
	else:
	    files= {}
	
	data_kmer= {}
	tags= []
	sim_extend= []
	chroms= []


	### read vcf
	t0= time.time()
	Window, mut_matrix, scale= VCF_read_filter(sim, sim_dir= sim_dir,chrom= chrom,haps_extract= haps_extract, scale_genSize= scale_genSize,
	    collapsed= collapsed,min_size= min_size, samp= samp, stepup= stepup, outemp= outemp,
	    indfile= indfile,diffs= diffs,bases= bases, ksize= ksize, ploidy= ploidy)

	mut_idx= np.argmax(mut_matrix,axis= 0)

	tag_list, tag_dict, pop_dict= ind_assignment_scatter_v1(sim,dir_sim= sim_dir,
	                  min_size= min_size, samp= samp, stepup= stepup, outemp= outemp,indfile= indfile,
	                  inds= inds, pop_dict= pop_dict,pop_sub= True)

	t1= time.time()
	read_time= t1- t0
	if not len(Window) or Window.shape[0] < total_inds:
	    return ''

	## counts for no tag sim:
	s0= time.time()
	PA_dict= parse_PA(Window, pop_dict,frequency_range= frequency_range)

	t2= time.time()
	print('time elapsed ref: {} m'.format((t2 - t1)/60))


	new_wind= {}
	for pop in pop_dict.keys():

		klist= list(pop_dict[pop])
		private= list(PA_dict[pop])
		pop_wind= Window[klist,:]
		pop_wind= pop_wind[:,private]

		##
		new_wind[pop]= {
			'array': pop_wind,
			'mut': [mut_idx[x] for x in private]
			}

		##
		#

	for pop in pop_dict.keys():
		dict_pop= {pop: list(range(len(pop_dict[pop])))}
		pop_summary, dummy= count_popKmers(new_wind[pop]['array'], mut_matrix, new_wind[pop]['mut'], dict_pop, 
												row=row,col=col)

		nline= [sim,pop,len(pop_dict[pop])]
		ncounts= pop_summary['counts'][pop]
		ncounts= ncounts.reshape(1,np.prod(ncounts.shape))[0]
		nline= nline + list(ncounts)
		nline= [str(x) for x in nline]
		with open(out_db,'a') as fp:
			fp.write('\t'.join(nline) + '\n')

	t3= time.time()
	print('time elapsed ref PA: {} m'.format((t3 - t2)/60))

	if len(tag_list):
		###
		print('len tag list: {}'.format(len(tag_list)))
		###

		for idx in range(len(tag_list)):
			
			tag= tag_list[idx]

			pop_dict= tag_dict[tag]
			pop_ori= list(pop_dict.keys())[0]
			if tag_sim in pop_ori:
			    pop_ori= pop_ori[len(tag_sim):].split('.')[0]

			pop_summary, dummy= count_popKmers(new_wind[pop_ori]['array'], mut_matrix, new_wind[pop_ori]['mut'], pop_dict,
						row=row,col=col,segregating= True,single= True)

			for pop in pop_summary['counts'].keys():
				nline= [sim,pop,len(pop_dict[pop])]
				ncounts= pop_summary['counts'][pop]
				ncounts= ncounts.reshape(1,np.prod(ncounts.shape))[0]
				nline= nline + list(ncounts)
				nline= [str(x) for x in nline]
				with open(out_db,'a') as fp:
					fp.write('\t'.join(nline) + '\n')

	return ''
示例#5
0
def mcounter_deploy_v2(data,
                       p_value=1e-5,
                       test_m='fisher',
                       chi_total=False,
                       ksize=3,
                       bases='ACGT',
                       frequency_range=[0, 1],
                       data_freqs={},
                       extract='pval',
                       row=64,
                       col=3,
                       tag_ref='_ss',
                       collapsed=False,
                       bsep='C',
                       muted_dir='',
                       sims_dir='mutation_counter/data/sims/',
                       fasta_var=True):
    '''
    Parse data dictionary.
        data: {sim: {counts:{pop:g}, Nvars:{pop:g}, sizes:{pop:g}}}
    i: use sim and pop IDs to create dictionary connecting original populations to 
    subset populations created using ind_assignment_scatter_v1.
    ii: for each pair of reference/subset populations, launch heatmapv2. return grid pvals or proportions,
    and proportion of mutations in subset population. allows for fisher or chi2 test for pval.
    - v2: compares sub pops to ref full pops other than its own; gets store of differences among refs.
    '''

    mutations = get_mutations(bases=bases, ksize=ksize)

    avail = list(data.keys())
    ref_idx = [int(tag_ref in avail[x]) for x in range(len(avail))]
    categ = {
        z: [x for x in range(len(avail)) if ref_idx[x] == z]
        for z in [0, 1]
    }

    fasta_ref_dict = {}
    pop_asso = {avail[x]: recursively_default_dict() for x in categ[0]}
    ref_batch_dict = recursively_default_dict()

    reference_freqs = {}
    fasta_count_array = []

    for idx in categ[0]:
        ref = avail[idx]
        batch = bsep.join(ref.split(bsep)[:-1])
        ref_batch_dict[batch][ref] = ''
        ref_dir = sims_dir + ref + '/'
        fasta_kmer_prop = get_fasta_prop(ref,
                                         ref_dir,
                                         mutations,
                                         ksize=ksize,
                                         bases=bases,
                                         collapsed=collapsed)
        fasta_ref_dict[ref] = fasta_kmer_prop
        fasta_count_array.extend(fasta_kmer_prop)

    ### get fasta var
    fasta_count_array = np.array(fasta_count_array)
    print(fasta_count_array.shape)
    print('fasta array shape: {}'.format(fasta_count_array.shape))
    fasta_var = set_SSD(fasta_count_array, fasta_count_array, same=True)

    fasta_mtype_var = np.std(fasta_count_array, axis=0)
    fasta_var_dict = {'dist': fasta_var, 'type_sd': fasta_mtype_var}
    ###
    ref_batch_dict = {z: [] for z, g in ref_batch_dict.items()}

    if data_freqs:
        reference_freqs = {x: {} for x in pop_asso.keys()}

    for av in categ[1]:
        dat = [x for x in data[avail[av]]['counts'].keys() if tag_ref in x]
        ref_sim = avail[av].split(tag_ref)[0]
        ref_pop = [x.split('.')[0].strip(tag_ref) for x in dat]
        for p in range(len(dat)):
            pop_asso[ref_sim][ref_pop[p]][avail[av]] = dat[p]

    d = 0
    count_data = recursively_default_dict()

    for ref in pop_asso.keys():
        batch = bsep.join(ref.split(bsep)[:-1])
        ref_count = fasta_ref_dict[ref]

        for pop in pop_asso[ref].keys():
            ref_pop_counts = data[ref]['counts'][pop]
            ref_pop_counts = ref_pop_counts / np.sum(ref_pop_counts)
            pop_shape = ref_pop_counts.shape
            ref_pop_counts = ref_pop_counts.reshape(1, np.prod(pop_shape))
            ref_pop_counts = (ref_pop_counts - ref_count / 3) / (1 - ref_count)
            ref_pop_counts = ref_pop_counts.reshape(*pop_shape)
            ref_batch_dict[batch].append((pop, ref, ref_pop_counts))

            if data_freqs:
                reference_freqs[ref][pop] = data_freqs[ref][pop]

            for sub in pop_asso[ref][pop].keys():

                ref_pair = [(ref, pop), (sub, pop_asso[ref][pop][sub])]

                fasta_dict_local = {ref: ref_count, sub: fasta_ref_dict[ref]}

                count_data[d] = run_stats(ref,
                                          ref_pair,
                                          data,
                                          data_freqs={},
                                          fasta_dict=fasta_dict_local,
                                          bsep=bsep,
                                          row=row,
                                          col=col,
                                          test_m=test_m,
                                          chi_total=chi_total)

                count_data[d]['pop'] = pop
                count_data[d]['other'] = []

                #for ref2 in pop_asso.keys():
                for pop2 in pop_asso[ref].keys():
                    if pop == pop2:
                        continue
                    if bsep.join(ref.split(bsep)[:-1]) != batch:
                        continue
                    ##
                    pop_dict = {ref: pop2, sub: pop_asso[ref][pop][sub]}

                    fasta_dict_local = {ref: ref_count, sub: ref_count}

                    ref_pair = [(ref, pop2), (sub, pop_asso[ref][pop][sub])]

                    pair_stats = run_stats(ref,
                                           ref_pair,
                                           data,
                                           data_freqs={},
                                           fasta_dict=fasta_dict_local,
                                           bsep=bsep,
                                           test_m=test_m,
                                           row=row,
                                           col=col,
                                           chi_total=chi_total)

                    count_data[d]['other'].append(pair_stats['diffs'])

                d += 1

    ####
    #### Reference counts, comparison by batch.
    if len(fasta_var):
        return pop_asso, count_data, ref_batch_dict, reference_freqs, fasta_var_dict
    else:
        return pop_asso, count_data, ref_batch_dict, reference_freqs