def example_2_doubled(): """ Solves a simple example. """ g = gen.multiple_priorities( io.load_generalized_from_file("assets/strong parity/example_2.txt"), 2) (a, c) = gp.generalized_parity_solver(g) return op.are_lists_equal(a, [1, 3, 4, 2]) and op.are_lists_equal(c, [])
def worstcase1_doubled(): """ Solves a worst case graph G_n for n = 1. """ g = gen.multiple_priorities( io.load_generalized_from_file("assets/strong parity/worstcase_1.txt"), 2) (a, c) = gp.generalized_parity_solver(g) return op.are_lists_equal(a, [1, 3, 4, 2, 0]) and op.are_lists_equal(c, [])
def figure56_doubled(): """ Solves the strong parity game from figure 5.6. """ g = gen.multiple_priorities( io.load_generalized_from_file("assets/strong parity/figure56.txt"), 2) (a, c) = gp.generalized_parity_solver(g) return op.are_lists_equal(a, [2, 4, 1, 6]) and op.are_lists_equal( c, [5, 3])
def benchmark_worstcase_n_nodes(n, k, iterations=3, step=10, plot=False, path=""): """ Benchmarks the classical algorithm for generalized parity games using the worst case game arenas generator. Arenas are the arenas of the worst case for the recursive algorithm for parity games, generalized with k functions :param n: number of nodes in generated graph. :param k: number of priority functions in the generated graph. :param iterations: number of times the algorithm is timed (default is 3). :param step: step to be taken in the generation. :param plot: if True, plots the data using matplotlib. :param path: path to the file in which to write the result. """ y = [] # list for the time recordings n_ = [] # list for the x values total_time = 0 # accumulator to record total time nbr_generated = 0 # conserving the number of generated mesures (used to get the index of a mesure) chrono = timer.Timer(verbose=False) # Timer object info = "Time to solve" # info about the current benchmark # print first line of output print u"Generator".center(40) + "|" + u"Nodes (n)".center(12) + "|" + info.center(40) + "\n" + \ "-" * 108 # games generated are size 1 to n for i in range(1, n, step): g = generators.strong_parity_worst_case(i) # generated game g = generators.multiple_priorities(g,k) temp = [] # #iterations calls to the solver are timed for j in range(iterations): with chrono: generalized_parity_solver(g) # solver call temp.append(chrono.interval) # add time recording min_recording = min(temp) y.append(min_recording) # get the minimum out of #iterations recordings n_.append(i) total_time += min_recording print "Worst-case graph".center(40) + "|" + str(i).center(12) + "|" \ + str(y[nbr_generated]).center(40) + "\n" + "-" * 108 nbr_generated += 1 # updating the number of generated mesures # at the end, print total time print "-" * 108 + "\n" + "Total time".center(40) + "|" + "#".center(12) + "|" + \ str(total_time).center(40) + "\n" + "-" * 108 + "\n" if plot: plt.grid(True) plt.title(u"Worst-case graph of size 1 to " + str(n)+" with 1 to "+str(k)+" priority functions") plt.xlabel(u'number of nodes') plt.ylabel(u'time (s)') points, = plt.plot(n_, y, 'g.', label=u"Execution time") plt.legend(loc='upper left', handles=[points]) plt.savefig(path) plt.clf() plt.close()