def eval_cnn_model(): eval_data, eval_data_labels, filelist = read_img_file('eval') # evaluate the model and print results eval_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": eval_data}, y=eval_data_labels, num_epochs=1, shuffle=False) eval_results = cnn_symbol_classifier.evaluate(input_fn=eval_input_fn) print(eval_results)
def train_cnn_model(steps): train_data, train_data_labels = read_img_file('train') # set up logging for predictions # log the values in the "softmax" tensor with label "probabilities" tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50) # train the model train_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": train_data}, y=train_data_labels, batch_size=100, num_epochs=None, shuffle=True) print(train_input_fn) cnn_symbol_classifier.train(input_fn=train_input_fn, steps=steps, hooks=[logging_hook])