def plot_fit_results(fit_results, centre_of_mass, channel, variable, k_value,
                     tau_value, output_folder, output_formats, bin_edges):
    h_mean = Hist(bin_edges, type='D')
    h_sigma = Hist(bin_edges, type='D')
    n_bins = h_mean.nbins()
    assert len(fit_results) == n_bins
    for i, fr in enumerate(fit_results):
        h_mean.SetBinContent(i + 1, fr.mean)
        h_mean.SetBinError(i + 1, fr.meanError)
        h_sigma.SetBinContent(i + 1, fr.sigma)
        h_sigma.SetBinError(i + 1, fr.sigmaError)
    histogram_properties = Histogram_properties()
    name_mpt = 'pull_distribution_mean_and_sigma_{0}_{1}_{2}TeV'
    histogram_properties.name = name_mpt.format(variable, channel,
                                                centre_of_mass)
    histogram_properties.y_axis_title = r'$\mu_{\text{pull}}$ ($\sigma_{\text{pull}}$)'
    histogram_properties.x_axis_title = latex_labels.variables_latex[variable]
    value = get_value_title(k_value, tau_value)
    title = 'pull distribution mean \& sigma for {0}'.format(value)
    histogram_properties.title = title
    histogram_properties.y_limits = [-0.5, 2]
    histogram_properties.xerr = True

    compare_measurements(models={
        'ideal $\mu$': make_line_hist(bin_edges, 0),
        'ideal $\sigma$': make_line_hist(bin_edges, 1)
    },
                         measurements={
                             r'$\mu_{\text{pull}}$': h_mean,
                             r'$\sigma_{\text{pull}}$': h_sigma
                         },
                         show_measurement_errors=True,
                         histogram_properties=histogram_properties,
                         save_folder=output_folder,
                         save_as=output_formats)
示例#2
0
def plot_bias(h_unfold_model, h_data_model, unfolded_data, variable,
              channel, come, method):
    hp = Histogram_properties()
    hp.name = '{channel}_bias_test_for_{variable}_at_{come}TeV'.format(
        channel=channel,
        variable=variable,
        come=come,
    )
    v_latex = latex_labels.variables_latex[variable]
    unit = ''
    if variable in ['HT', 'ST', 'MET', 'WPT']:
        unit = ' [GeV]'
    hp.x_axis_title = v_latex + unit
    hp.y_axis_title = 'Events'
    hp.title = 'Closure tests for {variable}'.format(variable=v_latex)
    
    output_folder = 'plots/unfolding/bias_test/{0}/'.format(method)

    compare_measurements(models={'MC truth': h_data_model,
                                 'unfold model': h_unfold_model},
                         measurements={'unfolded reco': unfolded_data},
                         show_measurement_errors=True,
                         histogram_properties=hp,
                         save_folder=output_folder,
                         save_as=['png', 'pdf'])
def plot_closure(unfolded_and_truths, variable, channel, come, method):
    hp = Histogram_properties()
    hp.name = '{channel}_closure_test_for_{variable}_at_{come}TeV'.format(
        channel=channel,
        variable=variable,
        come=come,
    )
    v_latex = latex_labels.variables_latex[variable]
    unit = ''
    if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
        unit = ' [GeV]'
    hp.x_axis_title = v_latex + unit
    # plt.ylabel( r, CMS.y_axis_title )
    hp.y_axis_title = r'$\frac{1}{\sigma}  \frac{d\sigma}{d' + v_latex + '}$' + unit
    hp.title = 'Closure tests for {variable}'.format(variable=v_latex)

    output_folder = 'plots/unfolding/closure_test/{0}/'.format(method)

    models = OrderedDict()
    measurements = OrderedDict()
    for sample in unfolded_and_truths:
        models[sample + ' truth'] = unfolded_and_truths[sample]['truth']
        measurements[sample + ' unfolded'] = unfolded_and_truths[sample]['unfolded']


    compare_measurements(
                         models = models,
                         measurements = measurements,
                         show_measurement_errors=True,
                         histogram_properties=hp,
                         save_folder=output_folder,
                         save_as=['pdf'],
                         match_models_to_measurements = True)
def plot_bias(unfolded_and_truths, variable, channel, come, method):
    hp = Histogram_properties()
    hp.name = 'Bias_{channel}_{variable}_at_{come}TeV'.format(
        channel=channel,
        variable=variable,
        come=come,
    )
    v_latex = latex_labels.variables_latex[variable]
    unit = ''
    if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
        unit = ' [GeV]'
    hp.x_axis_title = v_latex + unit
    # plt.ylabel( r, CMS.y_axis_title )
    hp.y_axis_title = 'Unfolded / Truth'
    hp.y_limits = [0.92, 1.08]
    hp.title = 'Bias for {variable}'.format(variable=v_latex)

    output_folder = 'plots/unfolding/bias_test/'

    measurements = { 'Central' : unfolded_and_truths['Central']['bias'] }

    models = {}
    for sample in unfolded_and_truths:
        if sample == 'Central' : continue
        models[sample] = unfolded_and_truths[sample]['bias']


    compare_measurements(
                         models = models,
                         measurements = measurements,
                         show_measurement_errors=True,
                         histogram_properties=hp,
                         save_folder=output_folder,
                         save_as=['pdf'],
                         match_models_to_measurements = True)
示例#5
0
def plot_bias_in_all_bins(
    biases, mean_bias, centre_of_mass, channel, variable, tau_value, output_folder, output_formats, bin_edges
):
    h_bias = Hist(bin_edges, type="D")
    n_bins = h_bias.nbins()
    assert len(biases) == n_bins
    for i, bias in enumerate(biases):
        h_bias.SetBinContent(i + 1, bias)
    histogram_properties = Histogram_properties()
    name_mpt = "bias_{0}_{1}_{2}TeV"
    histogram_properties.name = name_mpt.format(variable, channel, centre_of_mass)
    histogram_properties.y_axis_title = "Bias"
    histogram_properties.x_axis_title = latex_labels.variables_latex[variable]
    title = "pull distribution mean \& sigma for {0}".format(tau_value)
    histogram_properties.title = title
    histogram_properties.y_limits = [0, 10]
    histogram_properties.xerr = True

    compare_measurements(
        models={"Mean bias": make_line_hist(bin_edges, mean_bias)},
        measurements={"Bias": h_bias},
        show_measurement_errors=True,
        histogram_properties=histogram_properties,
        save_folder=output_folder,
        save_as=output_formats,
    )
示例#6
0
def plot_bias(h_unfold_model, h_data_model, unfolded_data, variable, channel,
              come, method):
    hp = Histogram_properties()
    hp.name = '{channel}_bias_test_for_{variable}_at_{come}TeV'.format(
        channel=channel,
        variable=variable,
        come=come,
    )
    v_latex = latex_labels.variables_latex[variable]
    unit = ''
    if variable in ['HT', 'ST', 'MET', 'WPT']:
        unit = ' [GeV]'
    hp.x_axis_title = v_latex + unit
    hp.y_axis_title = 'Events'
    hp.title = 'Closure tests for {variable}'.format(variable=v_latex)

    output_folder = 'plots/unfolding/bias_test/{0}/'.format(method)

    compare_measurements(models={
        'MC truth': h_data_model,
        'unfold model': h_unfold_model
    },
                         measurements={'unfolded reco': unfolded_data},
                         show_measurement_errors=True,
                         histogram_properties=hp,
                         save_folder=output_folder,
                         save_as=['png', 'pdf'])
def plot_results(results):
    '''
    Takes results fo the form:
        {centre-of-mass-energy: {
            channel : {
                variable : {
                    fit_variable : {
                        test : { sample : []},
                        }
                    }
                }
            }
        }
    '''
    global options
    output_base = 'plots/fit_checks/chi2'
    for COMEnergy in results.keys():
        tmp_result_1 = results[COMEnergy]
        for channel in tmp_result_1.keys():
            tmp_result_2 = tmp_result_1[channel]
            for variable in tmp_result_2.keys():
                tmp_result_3 = tmp_result_2[variable]
                for fit_variable in tmp_result_3.keys():
                    tmp_result_4 = tmp_result_3[fit_variable]
                    # histograms should be {sample: {test : histogram}}
                    histograms = {}
                    for test, chi2 in tmp_result_4.iteritems():
                        for sample in chi2.keys():
                            if not histograms.has_key(sample):
                                histograms[sample] = {}
                            # reverse order of test and sample
                            histograms[sample][test] = value_tuplelist_to_hist(
                                chi2[sample], bin_edges[variable])
                    for sample in histograms.keys():
                        hist_properties = Histogram_properties()
                        hist_properties.name = sample.replace('+',
                                                              '') + '_chi2'
                        hist_properties.title = '$\\chi^2$ distribution for fit output (' + sample + ')'
                        hist_properties.x_axis_title = '$' + latex_labels.variables_latex[
                            variable] + '$ [TeV]'
                        hist_properties.y_axis_title = '$\chi^2 = \\left({N_{fit}} - N_{{exp}}\\right)^2$'
                        hist_properties.set_log_y = True
                        hist_properties.y_limits = (1e-20, 1e20)
                        path = output_base + '/' + COMEnergy + 'TeV/' + channel + '/' + variable + '/' + fit_variable + '/'
                        if options.test:
                            path = output_base + '/test/'

                        measurements = {}
                        for test, histogram in histograms[sample].iteritems():
                            measurements[test.replace('_', ' ')] = histogram
                        compare_measurements(
                            {},
                            measurements,
                            show_measurement_errors=False,
                            histogram_properties=hist_properties,
                            save_folder=path,
                            save_as=['pdf'])
def compare_vjets_templates( variable = 'MET', met_type = 'patType1CorrectedPFMet',
                             title = 'Untitled', channel = 'electron' ):
    ''' Compares the V+jets templates in different bins
     of the current variable'''
    global fit_variable_properties, b_tag_bin, save_as
    variable_bins = variable_bins_ROOT[variable]
    histogram_template = get_histogram_template( variable )
    
    for fit_variable in electron_fit_variables:
        all_hists = {}
        inclusive_hist = None
        save_path = 'plots/%dTeV/fit_variables/%s/%s/' % ( measurement_config.centre_of_mass_energy, variable, fit_variable )
        make_folder_if_not_exists( save_path + '/vjets/' )
        
        max_bins = len( variable_bins )
        for bin_range in variable_bins[0:max_bins]:
            
            params = {'met_type': met_type, 'bin_range':bin_range, 'fit_variable':fit_variable, 'b_tag_bin':b_tag_bin, 'variable':variable}
            fit_variable_distribution = histogram_template % params
            # format: histograms['data'][qcd_fit_variable_distribution]
            histograms = get_histograms_from_files( [fit_variable_distribution], histogram_files )
            prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale )
            all_hists[bin_range] = histograms['V+Jets'][fit_variable_distribution]
    
        # create the inclusive distributions
        inclusive_hist = deepcopy( all_hists[variable_bins[0]] )
        for bin_range in variable_bins[1:max_bins]:
            inclusive_hist += all_hists[bin_range]
        for bin_range in variable_bins[0:max_bins]:
            if not all_hists[bin_range].Integral() == 0:
                all_hists[bin_range].Scale( 1 / all_hists[bin_range].Integral() )
        # normalise all histograms
        inclusive_hist.Scale( 1 / inclusive_hist.Integral() )
        # now compare inclusive to all bins
        histogram_properties = Histogram_properties()
        histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title']
        histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title']
        histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace( 'Events', 'a.u.' )
        histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']]
        histogram_properties.title = title
        histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.name = variable + '_' + fit_variable + '_' + b_tag_bin + '_VJets_template_comparison'
        histogram_properties.y_max_scale = 1.5
        measurements = {bin_range + ' GeV': histogram for bin_range, histogram in all_hists.iteritems()}
        measurements = OrderedDict( sorted( measurements.items() ) )
        fit_var = fit_variable.replace( 'electron_', '' )
        fit_var = fit_var.replace( 'muon_', '' )
        graphs = spread_x( measurements.values(), fit_variable_bin_edges[fit_var] )
        for key, graph in zip( sorted( measurements.keys() ), graphs ):
            measurements[key] = graph
        compare_measurements( models = {'inclusive' : inclusive_hist},
                             measurements = measurements,
                             show_measurement_errors = True,
                             histogram_properties = histogram_properties,
                             save_folder = save_path + '/vjets/',
                             save_as = save_as )
示例#9
0
def compare( central_mc, expected_result = None, measured_result = None, results = {}, variable = 'MET',
             channel = 'electron', bin_edges = [] ):
    global input_file, plot_location, ttbar_xsection, luminosity, centre_of_mass, method, test, log_plots

    channel_label = ''
    if channel == 'electron':
        channel_label = 'e+jets, $\geq$4 jets'
    elif channel == 'muon':
        channel_label = '$\mu$+jets, $\geq$4 jets'
    else:
        channel_label = '$e, \mu$ + jets combined, $\geq$4 jets'

    if test == 'data':
        title_template = 'CMS Preliminary, $\mathcal{L} = %.1f$ fb$^{-1}$  at $\sqrt{s}$ = %d TeV \n %s'
        title = title_template % ( luminosity / 1000., centre_of_mass, channel_label )
    else:
        title_template = 'CMS Simulation at $\sqrt{s}$ = %d TeV \n %s'
        title = title_template % ( centre_of_mass, channel_label )

    models = {latex_labels.measurements_latex['MADGRAPH'] : central_mc}
    if expected_result and test == 'data':
        models.update({'fitted data' : expected_result})
        # scale central MC to lumi
        nEvents = input_file.EventFilter.EventCounter.GetBinContent( 1 )  # number of processed events 
        lumiweight = ttbar_xsection * luminosity / nEvents
        central_mc.Scale( lumiweight )
    elif expected_result:
        models.update({'expected' : expected_result})
    if measured_result and test != 'data':
        models.update({'measured' : measured_result})
    
    measurements = collections.OrderedDict()
    for key, value in results['k_value_results'].iteritems():
        measurements['k = ' + str( key )] = value
    
    # get some spread in x    
    graphs = spread_x( measurements.values(), bin_edges )
    for key, graph in zip( measurements.keys(), graphs ):
        measurements[key] = graph

    histogram_properties = Histogram_properties()
    histogram_properties.name = channel + '_' + variable + '_' + method + '_' + test
    histogram_properties.title = title + ', ' + latex_labels.b_tag_bins_latex['2orMoreBtags']
    histogram_properties.x_axis_title = '$' + latex_labels.variables_latex[variable] + '$'
    histogram_properties.y_axis_title = r'Events'
#     histogram_properties.y_limits = [0, 0.03]
    histogram_properties.x_limits = [bin_edges[0], bin_edges[-1]]

    if log_plots:
        histogram_properties.set_log_y = True
        histogram_properties.name += '_log'

    compare_measurements( models, measurements, show_measurement_errors = True,
                          histogram_properties = histogram_properties,
                          save_folder = plot_location, save_as = ['pdf'] )
def plot_fit_results(fit_results, initial_values, channel):
    global variable, output_folder

    title = electron_histogram_title if channel == 'electron' else muon_histogram_title

    histogram_properties = Histogram_properties()
    histogram_properties.title = title

    histogram_properties.x_axis_title = variable + ' [GeV]'
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = 'upper right'
    # we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
    for sample in ['TTJet', 'SingleTop', 'QCD', 'V+Jets']:
        histograms = {}
        # absolute eta measurement as baseline
        h_absolute_eta = None
        h_before = None
        histogram_properties.y_axis_title = 'Fitted number of events for ' + samples_latex[
            sample]

        for fit_var_input in fit_results.keys():
            latex_string = create_latex_string(fit_var_input)
            fit_data = fit_results[fit_var_input][sample]
            h = value_error_tuplelist_to_hist(fit_data, bin_edges[variable])
            if fit_var_input == 'absolute_eta':
                h_absolute_eta = h
            elif fit_var_input == 'before':
                h_before = h
            else:
                histograms[latex_string] = h
        graphs = spread_x(histograms.values(), bin_edges[variable])
        for key, graph in zip(histograms.keys(), graphs):
            histograms[key] = graph
        filename = sample.replace('+', '_') + '_fit_var_comparison_' + channel
        histogram_properties.name = filename
        histogram_properties.y_limits = 0, limit_range_y(
            h_absolute_eta)[1] * 1.3
        histogram_properties.x_limits = bin_edges[variable][0], bin_edges[
            variable][-1]

        h_initial_values = value_error_tuplelist_to_hist(
            initial_values[sample], bin_edges[variable])
        h_initial_values.Scale(closure_tests['simple'][sample])

        compare_measurements(models={
            fit_variables_latex['absolute_eta']: h_absolute_eta,
            'initial values': h_initial_values,
            'before': h_before
        },
                             measurements=histograms,
                             show_measurement_errors=True,
                             histogram_properties=histogram_properties,
                             save_folder=output_folder,
                             save_as=['png', 'pdf'])
def plot_results ( results ):
    '''
    Takes results fo the form:
        {centre-of-mass-energy: {
            channel : {
                variable : {
                    fit_variable : {
                        test : { sample : []},
                        }
                    }
                }
            }
        }
    '''
    global options
    output_base = 'plots/fit_checks/chi2'
    for COMEnergy in results.keys():
        tmp_result_1 = results[COMEnergy]
        for channel in tmp_result_1.keys():
            tmp_result_2 = tmp_result_1[channel]
            for variable in tmp_result_2.keys():
                tmp_result_3 = tmp_result_2[variable]
                for fit_variable in tmp_result_3.keys():
                    tmp_result_4 = tmp_result_3[fit_variable]
                    # histograms should be {sample: {test : histogram}}
                    histograms = {}
                    for test, chi2 in tmp_result_4.iteritems():
                        for sample in chi2.keys():
                            if not histograms.has_key(sample):
                                histograms[sample] = {}
                            # reverse order of test and sample
                            histograms[sample][test] = value_tuplelist_to_hist(chi2[sample], bin_edges[variable])
                    for sample in histograms.keys():
                        hist_properties = Histogram_properties()
                        hist_properties.name = sample.replace('+', '') + '_chi2'
                        hist_properties.title = '$\\chi^2$ distribution for fit output (' + sample + ')'
                        hist_properties.x_axis_title = '$' + latex_labels.variables_latex[variable] + '$ [TeV]'
                        hist_properties.y_axis_title = '$\chi^2 = \\left({N_{fit}} - N_{{exp}}\\right)^2$'
                        hist_properties.set_log_y = True
                        hist_properties.y_limits = (1e-20, 1e20)
                        path = output_base + '/' + COMEnergy + 'TeV/' + channel + '/' + variable + '/' + fit_variable + '/'
                        if options.test:
                            path = output_base + '/test/'
                        
                        measurements = {}
                        for test, histogram in histograms[sample].iteritems():
                            measurements[test.replace('_',' ')] = histogram
                        compare_measurements({}, 
                                             measurements, 
                                             show_measurement_errors = False, 
                                             histogram_properties = hist_properties, 
                                             save_folder = path, 
                                             save_as = ['pdf'])
def plot_fit_results(fit_results, initial_values, channel):
    global variable, output_folder

    title = electron_histogram_title if channel == "electron" else muon_histogram_title

    histogram_properties = Histogram_properties()
    histogram_properties.title = title

    histogram_properties.x_axis_title = variable + " [GeV]"
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = "upper right"
    # we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
    for sample in ["TTJet", "SingleTop", "QCD", "V+Jets"]:
        histograms = {}
        # absolute eta measurement as baseline
        h_absolute_eta = None
        h_before = None
        histogram_properties.y_axis_title = "Fitted number of events for " + samples_latex[sample]

        for fit_var_input in fit_results.keys():
            latex_string = create_latex_string(fit_var_input)
            fit_data = fit_results[fit_var_input][sample]
            h = value_error_tuplelist_to_hist(fit_data, bin_edges[variable])
            if fit_var_input == "absolute_eta":
                h_absolute_eta = h
            elif fit_var_input == "before":
                h_before = h
            else:
                histograms[latex_string] = h
        graphs = spread_x(histograms.values(), bin_edges[variable])
        for key, graph in zip(histograms.keys(), graphs):
            histograms[key] = graph
        filename = sample.replace("+", "_") + "_fit_var_comparison_" + channel
        histogram_properties.name = filename
        histogram_properties.y_limits = 0, limit_range_y(h_absolute_eta)[1] * 1.3
        histogram_properties.x_limits = bin_edges[variable][0], bin_edges[variable][-1]

        h_initial_values = value_error_tuplelist_to_hist(initial_values[sample], bin_edges[variable])
        h_initial_values.Scale(closure_tests["simple"][sample])

        compare_measurements(
            models={
                fit_variables_latex["absolute_eta"]: h_absolute_eta,
                "initial values": h_initial_values,
                "before": h_before,
            },
            measurements=histograms,
            show_measurement_errors=True,
            histogram_properties=histogram_properties,
            save_folder=output_folder,
            save_as=["png", "pdf"],
        )
def plot_fit_results( fit_results, initial_values, channel ):
    global variable, output_folder
    
    title = electron_histogram_title if channel == 'electron' else muon_histogram_title
    
    
    histogram_properties = Histogram_properties()
    histogram_properties.title = title
    
    histogram_properties.x_axis_title = variable + ' [GeV]'
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = 'upper right'
    # we will need 4 histograms: TTJet, SingleTop, QCD, V+Jets
    for sample in ['TTJet', 'SingleTop', 'QCD', 'V+Jets']:
        histograms = {}
        # absolute eta measurement as baseline
        h_absolute_eta = None
        h_before = None
        histogram_properties.y_axis_title = 'Fitted number of events for ' + samples_latex[sample]
        
        for fit_var_input in fit_results.keys():
            latex_string = create_latex_string( fit_var_input )
            fit_data = fit_results[fit_var_input][sample]
            h = value_error_tuplelist_to_hist( fit_data,
                                              bin_edges[variable] )
            if fit_var_input == 'absolute_eta':
                h_absolute_eta = h
            elif fit_var_input == 'before':
                h_before = h
            else:
                histograms[latex_string] = h
        graphs = spread_x( histograms.values(), bin_edges[variable] )
        for key, graph in zip( histograms.keys(), graphs ):
            histograms[key] = graph
        filename = sample.replace( '+', '_' ) + '_fit_var_comparison_' + channel
        histogram_properties.name = filename
        histogram_properties.y_limits = 0, limit_range_y( h_absolute_eta )[1] * 1.3
        histogram_properties.x_limits = bin_edges[variable][0], bin_edges[variable][-1]
        
        h_initial_values = value_error_tuplelist_to_hist( initial_values[sample],
                                                         bin_edges[variable] )
        h_initial_values.Scale(closure_tests['simple'][sample])
        
        compare_measurements( models = {fit_variables_latex['absolute_eta']:h_absolute_eta,
                                        'initial values' : h_initial_values,
                                        'before': h_before},
                             measurements = histograms,
                             show_measurement_errors = True,
                             histogram_properties = histogram_properties,
                             save_folder = output_folder,
                             save_as = ['png', 'pdf'] )
示例#14
0
def plot_bias(h_unfold_model, h_data_model, unfolded_data, variable, channel, come, method):
    hp = Histogram_properties()
    hp.name = "{channel}_bias_test_for_{variable}_at_{come}TeV".format(channel=channel, variable=variable, come=come)
    v_latex = latex_labels.variables_latex[variable]
    unit = ""
    if variable in ["HT", "ST", "MET", "WPT"]:
        unit = " [GeV]"
    hp.x_axis_title = v_latex + unit
    hp.y_axis_title = "Events"
    hp.title = "Closure tests for {variable}".format(variable=v_latex)

    output_folder = "plots/unfolding/bias_test/{0}/".format(method)

    compare_measurements(
        models={"MC truth": h_data_model, "unfold model": h_unfold_model},
        measurements={"unfolded reco": unfolded_data},
        show_measurement_errors=True,
        histogram_properties=hp,
        save_folder=output_folder,
        save_as=["png", "pdf"],
    )
示例#15
0
def plot_fit_results(
    fit_results, centre_of_mass, channel, variable, k_value, tau_value, output_folder, output_formats, bin_edges
):
    h_mean = Hist(bin_edges, type="D")
    h_sigma = Hist(bin_edges, type="D")
    n_bins = h_mean.nbins()
    assert len(fit_results) == n_bins

    mean_abs_pull = 0
    for i, fr in enumerate(fit_results):
        mean_abs_pull += abs(fr.mean)
        h_mean.SetBinContent(i + 1, fr.mean)
        h_mean.SetBinError(i + 1, fr.meanError)
        h_sigma.SetBinContent(i + 1, fr.sigma)
        h_sigma.SetBinError(i + 1, fr.sigmaError)
    mean_abs_pull /= n_bins
    histogram_properties = Histogram_properties()
    name_mpt = "pull_distribution_mean_and_sigma_{0}_{1}_{2}TeV"
    histogram_properties.name = name_mpt.format(variable, channel, centre_of_mass)
    histogram_properties.y_axis_title = r"$\mu_{\text{pull}}$ ($\sigma_{\text{pull}}$)"
    histogram_properties.x_axis_title = latex_labels.variables_latex[variable]
    histogram_properties.legend_location = (0.98, 0.48)
    value = get_value_title(k_value, tau_value)
    title = "pull distribution mean \& sigma for {0}".format(value)
    histogram_properties.title = title
    histogram_properties.y_limits = [-2, 2]
    histogram_properties.xerr = True

    compare_measurements(
        models={
            "mean $|\mu|$": make_line_hist(bin_edges, mean_abs_pull),
            "ideal $\mu$": make_line_hist(bin_edges, 0),
            "ideal $\sigma$": make_line_hist(bin_edges, 1),
        },
        measurements={r"$\mu_{\text{pull}}$": h_mean, r"$\sigma_{\text{pull}}$": h_sigma},
        show_measurement_errors=True,
        histogram_properties=histogram_properties,
        save_folder=output_folder,
        save_as=output_formats,
    )
def compare_vjets_btag_regions( variable = 'MET', met_type = 'patType1CorrectedPFMet',
                                title = 'Untitled', channel = 'electron' ):
    ''' Compares the V+Jets template in different b-tag bins'''
    global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
    b_tag_bin_ctl = '0orMoreBtag'
    variable_bins = variable_bins_ROOT[variable]
    histogram_template = get_histogram_template( variable )
    
    for fit_variable in electron_fit_variables:
        if '_bl' in fit_variable:
                b_tag_bin_ctl = '1orMoreBtag'
        else:
            b_tag_bin_ctl = '0orMoreBtag'
        save_path = 'plots/%dTeV/fit_variables/%s/%s/' % ( measurement_config.centre_of_mass_energy, variable, fit_variable )
        make_folder_if_not_exists( save_path + '/vjets/' )
        histogram_properties = Histogram_properties()
        histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title']
        histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title']
        histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace( 'Events', 'a.u.' )
        histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']]
        histogram_properties.title = title
        histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
        histogram_properties.y_max_scale = 1.5
        for bin_range in variable_bins:
            params = {'met_type': met_type, 'bin_range':bin_range, 'fit_variable':fit_variable, 'b_tag_bin':b_tag_bin, 'variable':variable}
            fit_variable_distribution = histogram_template % params
            fit_variable_distribution_ctl = fit_variable_distribution.replace( b_tag_bin, b_tag_bin_ctl )
            # format: histograms['data'][qcd_fit_variable_distribution]
            histograms = get_histograms_from_files( [fit_variable_distribution, fit_variable_distribution_ctl], {'V+Jets' : histogram_files['V+Jets']} )
            prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale )
            histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin_ctl + '_VJets_template_comparison'
            histograms['V+Jets'][fit_variable_distribution].Scale( 1 / histograms['V+Jets'][fit_variable_distribution].Integral() )
            histograms['V+Jets'][fit_variable_distribution_ctl].Scale( 1 / histograms['V+Jets'][fit_variable_distribution_ctl].Integral() )
            compare_measurements( models = {'no b-tag' : histograms['V+Jets'][fit_variable_distribution_ctl]},
                             measurements = {'$>=$ 2 b-tags': histograms['V+Jets'][fit_variable_distribution]},
                             show_measurement_errors = True,
                             histogram_properties = histogram_properties,
                             save_folder = save_path + '/vjets/',
                             save_as = save_as )
def plot_fit_results(fit_results, centre_of_mass, channel, variable, k_value,
                     tau_value, output_folder, output_formats, bin_edges):
    h_mean = Hist(bin_edges, type='D')
    h_sigma = Hist(bin_edges, type='D')
    n_bins = h_mean.nbins()
    assert len(fit_results) == n_bins
    for i, fr in enumerate(fit_results):
        h_mean.SetBinContent(i + 1, fr.mean)
        h_mean.SetBinError(i + 1, fr.meanError)
        h_sigma.SetBinContent(i + 1, fr.sigma)
        h_sigma.SetBinError(i + 1, fr.sigmaError)
    histogram_properties = Histogram_properties()
    name_mpt = 'pull_distribution_mean_and_sigma_{0}_{1}_{2}TeV'
    histogram_properties.name = name_mpt.format(
        variable,
        channel,
        centre_of_mass
    )
    histogram_properties.y_axis_title = r'$\mu_{\text{pull}}$ ($\sigma_{\text{pull}}$)'
    histogram_properties.x_axis_title = latex_labels.variables_latex[variable]
    value = get_value_title(k_value, tau_value)
    title = 'pull distribution mean \& sigma for {0}'.format(value)
    histogram_properties.title = title
    histogram_properties.y_limits = [-0.5, 2]
    histogram_properties.xerr = True

    compare_measurements(
        models={
            'ideal $\mu$': make_line_hist(bin_edges, 0),
            'ideal $\sigma$': make_line_hist(bin_edges, 1)
        },
        measurements={
            r'$\mu_{\text{pull}}$': h_mean,
            r'$\sigma_{\text{pull}}$': h_sigma
        },
        show_measurement_errors=True,
        histogram_properties=histogram_properties,
        save_folder=output_folder,
        save_as=output_formats)
def compare_qcd_control_regions( variable = 'MET', met_type = 'patType1CorrectedPFMet', title = 'Untitled'):
    ''' Compares the templates from the control regions in different bins
     of the current variable'''
    global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
    variable_bins = variable_bins_ROOT[variable]
    histogram_template = get_histogram_template( variable )
    
    for fit_variable in electron_fit_variables:
        all_hists = {}
        inclusive_hist = None
        if '_bl' in fit_variable:
                b_tag_bin_ctl = '1orMoreBtag'
        else:
            b_tag_bin_ctl = '0orMoreBtag'
        save_path = 'plots/fit_variables/%dTeV/%s/%s/' % (measurement_config.centre_of_mass_energy, variable, fit_variable)
        make_folder_if_not_exists(save_path + '/qcd/')
        
        max_bins = 3
        for bin_range in variable_bins[0:max_bins]:
            
            params = {'met_type': met_type, 'bin_range':bin_range, 'fit_variable':fit_variable, 'b_tag_bin':b_tag_bin, 'variable':variable}
            fit_variable_distribution = histogram_template % params
            qcd_fit_variable_distribution = fit_variable_distribution.replace( 'Ref selection', 'QCDConversions' )
            qcd_fit_variable_distribution = qcd_fit_variable_distribution.replace( b_tag_bin, b_tag_bin_ctl )
            # format: histograms['data'][qcd_fit_variable_distribution]
            histograms = get_histograms_from_files( [qcd_fit_variable_distribution], histogram_files )
            prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale )

            histograms_for_cleaning = {'data':histograms['data'][qcd_fit_variable_distribution],
                               'V+Jets':histograms['V+Jets'][qcd_fit_variable_distribution],
                               'SingleTop':histograms['SingleTop'][qcd_fit_variable_distribution],
                               'TTJet':histograms['TTJet'][qcd_fit_variable_distribution]}
            qcd_from_data = clean_control_region( histograms_for_cleaning, subtract = ['TTJet', 'V+Jets', 'SingleTop'] )
            # clean
            all_hists[bin_range] = qcd_from_data
    
        # create the inclusive distributions
        inclusive_hist = deepcopy(all_hists[variable_bins[0]])
        for bin_range in variable_bins[1:max_bins]:
            inclusive_hist += all_hists[bin_range]
        for bin_range in variable_bins[0:max_bins]:
            if not all_hists[bin_range].Integral() == 0:
                all_hists[bin_range].Scale(1/all_hists[bin_range].Integral())
        # normalise all histograms
        inclusive_hist.Scale(1/inclusive_hist.Integral())
        # now compare inclusive to all bins
        histogram_properties = Histogram_properties()
        histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title']
        histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title']
        histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace('Events', 'a.u.')
        histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']]
#         histogram_properties.y_limits = [0, 0.5]
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
        histogram_properties.name = variable + '_' + fit_variable + '_' + b_tag_bin_ctl + '_QCD_template_comparison'
        measurements = {bin_range + ' GeV': histogram for bin_range, histogram in all_hists.iteritems()}
        measurements = OrderedDict(sorted(measurements.items()))
        compare_measurements(models = {'inclusive' : inclusive_hist}, 
                             measurements = measurements, 
                             show_measurement_errors = True, 
                             histogram_properties = histogram_properties, 
                             save_folder = save_path + '/qcd/', 
                             save_as = save_as)
def debug_last_bin():
    '''
        For debugging why the last bin in the problematic variables deviates a
        lot in _one_ of the channels only.
    '''
    file_template = '/hdfs/TopQuarkGroup/run2/dpsData/'
    file_template += 'data/normalisation/background_subtraction/13TeV/'
    file_template += '{variable}/VisiblePS/central/'
    file_template += 'normalised_xsection_{channel}_RooUnfoldSvd{suffix}.txt'
    problematic_variables = ['HT', 'MET', 'NJets', 'lepton_pt']

    for variable in problematic_variables:
        results = {}
        Result = namedtuple(
            'Result', ['before_unfolding', 'after_unfolding', 'model'])
        for channel in ['electron', 'muon', 'combined']:
            input_file_data = file_template.format(
                variable=variable,
                channel=channel,
                suffix='_with_errors',
            )
            input_file_model = file_template.format(
                variable=variable,
                channel=channel,
                suffix='',
            )
            data = read_data_from_JSON(input_file_data)
            data_model = read_data_from_JSON(input_file_model)
            before_unfolding = data['TTJet_measured_withoutFakes']
            after_unfolding = data['TTJet_unfolded']

            model = data_model['powhegPythia8']

            # only use the last bin
            h_before_unfolding = value_errors_tuplelist_to_graph(
                [before_unfolding[-1]], bin_edges_vis[variable][-2:])
            h_after_unfolding = value_errors_tuplelist_to_graph(
                [after_unfolding[-1]], bin_edges_vis[variable][-2:])
            h_model = value_error_tuplelist_to_hist(
                [model[-1]], bin_edges_vis[variable][-2:])

            r = Result(before_unfolding, after_unfolding, model)
            h = Result(h_before_unfolding, h_after_unfolding, h_model)
            results[channel] = (r, h)

        models = {'POWHEG+PYTHIA': results['combined'][1].model}
        h_unfolded = [results[channel][1].after_unfolding for channel in [
            'electron', 'muon', 'combined']]
        tmp_hists = spread_x(h_unfolded, bin_edges_vis[variable][-2:])
        measurements = {}
        for channel, hist in zip(['electron', 'muon', 'combined'], tmp_hists):
            value = results[channel][0].after_unfolding[-1][0]
            error = results[channel][0].after_unfolding[-1][1]
            label = '{c_label} ({value:1.2g} $\pm$ {error:1.2g})'.format(
                    c_label=channel,
                    value=value,
                    error=error,
            )
            measurements[label] = hist

        properties = Histogram_properties()
        properties.name = 'normalised_xsection_compare_channels_{0}_{1}_last_bin'.format(
            variable, channel)
        properties.title = 'Comparison of channels'
        properties.path = 'plots'
        properties.has_ratio = True
        properties.xerr = False
        properties.x_limits = (
            bin_edges_vis[variable][-2], bin_edges_vis[variable][-1])
        properties.x_axis_title = variables_latex[variable]
        properties.y_axis_title = r'$\frac{1}{\sigma}  \frac{d\sigma}{d' + \
            variables_latex[variable] + '}$'
        properties.legend_location = (0.95, 0.40)
        if variable == 'NJets':
            properties.legend_location = (0.97, 0.80)
        properties.formats = ['png']

        compare_measurements(models=models, measurements=measurements, show_measurement_errors=True,
                             histogram_properties=properties, save_folder='plots/', save_as=properties.formats)
def compare_vjets_templates(variable='MET',
                            met_type='patType1CorrectedPFMet',
                            title='Untitled',
                            channel='electron'):
    ''' Compares the V+jets templates in different bins
     of the current variable'''
    global fit_variable_properties, b_tag_bin, save_as
    variable_bins = variable_bins_ROOT[variable]
    histogram_template = get_histogram_template(variable)

    for fit_variable in electron_fit_variables:
        all_hists = {}
        inclusive_hist = None
        save_path = 'plots/%dTeV/fit_variables/%s/%s/' % (
            measurement_config.centre_of_mass_energy, variable, fit_variable)
        make_folder_if_not_exists(save_path + '/vjets/')

        max_bins = len(variable_bins)
        for bin_range in variable_bins[0:max_bins]:

            params = {
                'met_type': met_type,
                'bin_range': bin_range,
                'fit_variable': fit_variable,
                'b_tag_bin': b_tag_bin,
                'variable': variable
            }
            fit_variable_distribution = histogram_template % params
            # format: histograms['data'][qcd_fit_variable_distribution]
            histograms = get_histograms_from_files([fit_variable_distribution],
                                                   histogram_files)
            prepare_histograms(
                histograms,
                rebin=fit_variable_properties[fit_variable]['rebin'],
                scale_factor=measurement_config.luminosity_scale)
            all_hists[bin_range] = histograms['V+Jets'][
                fit_variable_distribution]

        # create the inclusive distributions
        inclusive_hist = deepcopy(all_hists[variable_bins[0]])
        for bin_range in variable_bins[1:max_bins]:
            inclusive_hist += all_hists[bin_range]
        for bin_range in variable_bins[0:max_bins]:
            if not all_hists[bin_range].Integral() == 0:
                all_hists[bin_range].Scale(1 / all_hists[bin_range].Integral())
        # normalise all histograms
        inclusive_hist.Scale(1 / inclusive_hist.Integral())
        # now compare inclusive to all bins
        histogram_properties = Histogram_properties()
        histogram_properties.x_axis_title = fit_variable_properties[
            fit_variable]['x-title']
        histogram_properties.y_axis_title = fit_variable_properties[
            fit_variable]['y-title']
        histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace(
            'Events', 'a.u.')
        histogram_properties.x_limits = [
            fit_variable_properties[fit_variable]['min'],
            fit_variable_properties[fit_variable]['max']
        ]
        histogram_properties.title = title
        histogram_properties.additional_text = channel_latex[
            channel] + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.name = variable + '_' + fit_variable + '_' + b_tag_bin + '_VJets_template_comparison'
        histogram_properties.y_max_scale = 1.5
        measurements = {
            bin_range + ' GeV': histogram
            for bin_range, histogram in all_hists.iteritems()
        }
        measurements = OrderedDict(sorted(measurements.items()))
        fit_var = fit_variable.replace('electron_', '')
        fit_var = fit_var.replace('muon_', '')
        graphs = spread_x(measurements.values(),
                          fit_variable_bin_edges[fit_var])
        for key, graph in zip(sorted(measurements.keys()), graphs):
            measurements[key] = graph
        compare_measurements(models={'inclusive': inclusive_hist},
                             measurements=measurements,
                             show_measurement_errors=True,
                             histogram_properties=histogram_properties,
                             save_folder=save_path + '/vjets/',
                             save_as=save_as)
def compare_vjets_btag_regions(variable='MET',
                               met_type='patType1CorrectedPFMet',
                               title='Untitled',
                               channel='electron'):
    ''' Compares the V+Jets template in different b-tag bins'''
    global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
    b_tag_bin_ctl = '0orMoreBtag'
    variable_bins = variable_bins_ROOT[variable]
    histogram_template = get_histogram_template(variable)

    for fit_variable in electron_fit_variables:
        if '_bl' in fit_variable:
            b_tag_bin_ctl = '1orMoreBtag'
        else:
            b_tag_bin_ctl = '0orMoreBtag'
        save_path = 'plots/%dTeV/fit_variables/%s/%s/' % (
            measurement_config.centre_of_mass_energy, variable, fit_variable)
        make_folder_if_not_exists(save_path + '/vjets/')
        histogram_properties = Histogram_properties()
        histogram_properties.x_axis_title = fit_variable_properties[
            fit_variable]['x-title']
        histogram_properties.y_axis_title = fit_variable_properties[
            fit_variable]['y-title']
        histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace(
            'Events', 'a.u.')
        histogram_properties.x_limits = [
            fit_variable_properties[fit_variable]['min'],
            fit_variable_properties[fit_variable]['max']
        ]
        histogram_properties.title = title
        histogram_properties.additional_text = channel_latex[
            channel] + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
        histogram_properties.y_max_scale = 1.5
        for bin_range in variable_bins:
            params = {
                'met_type': met_type,
                'bin_range': bin_range,
                'fit_variable': fit_variable,
                'b_tag_bin': b_tag_bin,
                'variable': variable
            }
            fit_variable_distribution = histogram_template % params
            fit_variable_distribution_ctl = fit_variable_distribution.replace(
                b_tag_bin, b_tag_bin_ctl)
            # format: histograms['data'][qcd_fit_variable_distribution]
            histograms = get_histograms_from_files(
                [fit_variable_distribution, fit_variable_distribution_ctl],
                {'V+Jets': histogram_files['V+Jets']})
            prepare_histograms(
                histograms,
                rebin=fit_variable_properties[fit_variable]['rebin'],
                scale_factor=measurement_config.luminosity_scale)
            histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin_ctl + '_VJets_template_comparison'
            histograms['V+Jets'][fit_variable_distribution].Scale(
                1 / histograms['V+Jets'][fit_variable_distribution].Integral())
            histograms['V+Jets'][fit_variable_distribution_ctl].Scale(
                1 /
                histograms['V+Jets'][fit_variable_distribution_ctl].Integral())
            compare_measurements(
                models={
                    'no b-tag':
                    histograms['V+Jets'][fit_variable_distribution_ctl]
                },
                measurements={
                    '$>=$ 2 b-tags':
                    histograms['V+Jets'][fit_variable_distribution]
                },
                show_measurement_errors=True,
                histogram_properties=histogram_properties,
                save_folder=save_path + '/vjets/',
                save_as=save_as)
def compare_qcd_control_regions(variable='MET',
                                met_type='patType1CorrectedPFMet',
                                title='Untitled',
                                channel='electron'):
    ''' Compares the templates from the control regions in different bins
     of the current variable'''
    global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
    variable_bins = variable_bins_ROOT[variable]
    histogram_template = get_histogram_template(variable)

    for fit_variable in electron_fit_variables:
        all_hists = {}
        inclusive_hist = None
        if '_bl' in fit_variable:
            b_tag_bin_ctl = '1orMoreBtag'
        else:
            b_tag_bin_ctl = '0orMoreBtag'
        save_path = 'plots/%dTeV/fit_variables/%s/%s/' % (
            measurement_config.centre_of_mass_energy, variable, fit_variable)
        make_folder_if_not_exists(save_path + '/qcd/')

        max_bins = 3
        for bin_range in variable_bins[0:max_bins]:

            params = {
                'met_type': met_type,
                'bin_range': bin_range,
                'fit_variable': fit_variable,
                'b_tag_bin': b_tag_bin,
                'variable': variable
            }
            fit_variable_distribution = histogram_template % params
            qcd_fit_variable_distribution = fit_variable_distribution.replace(
                'Ref selection', 'QCDConversions')
            qcd_fit_variable_distribution = qcd_fit_variable_distribution.replace(
                b_tag_bin, b_tag_bin_ctl)
            # format: histograms['data'][qcd_fit_variable_distribution]
            histograms = get_histograms_from_files(
                [qcd_fit_variable_distribution], histogram_files)
            prepare_histograms(
                histograms,
                rebin=fit_variable_properties[fit_variable]['rebin'],
                scale_factor=measurement_config.luminosity_scale)

            histograms_for_cleaning = {
                'data': histograms['data'][qcd_fit_variable_distribution],
                'V+Jets': histograms['V+Jets'][qcd_fit_variable_distribution],
                'SingleTop':
                histograms['SingleTop'][qcd_fit_variable_distribution],
                'TTJet': histograms['TTJet'][qcd_fit_variable_distribution]
            }
            qcd_from_data = clean_control_region(
                histograms_for_cleaning,
                subtract=['TTJet', 'V+Jets', 'SingleTop'])
            # clean
            all_hists[bin_range] = qcd_from_data

        # create the inclusive distributions
        inclusive_hist = deepcopy(all_hists[variable_bins[0]])
        for bin_range in variable_bins[1:max_bins]:
            inclusive_hist += all_hists[bin_range]
        for bin_range in variable_bins[0:max_bins]:
            if not all_hists[bin_range].Integral() == 0:
                all_hists[bin_range].Scale(1 / all_hists[bin_range].Integral())
        # normalise all histograms
        inclusive_hist.Scale(1 / inclusive_hist.Integral())
        # now compare inclusive to all bins
        histogram_properties = Histogram_properties()
        histogram_properties.x_axis_title = fit_variable_properties[
            fit_variable]['x-title']
        histogram_properties.y_axis_title = fit_variable_properties[
            fit_variable]['y-title']
        histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace(
            'Events', 'a.u.')
        histogram_properties.x_limits = [
            fit_variable_properties[fit_variable]['min'],
            fit_variable_properties[fit_variable]['max']
        ]
        #         histogram_properties.y_limits = [0, 0.5]
        histogram_properties.title = title
        histogram_properties.additional_text = channel_latex[
            channel] + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
        histogram_properties.name = variable + '_' + fit_variable + '_' + b_tag_bin_ctl + '_QCD_template_comparison'
        histogram_properties.y_max_scale = 1.5
        measurements = {
            bin_range + ' GeV': histogram
            for bin_range, histogram in all_hists.iteritems()
        }
        measurements = OrderedDict(sorted(measurements.items()))
        compare_measurements(models={'inclusive': inclusive_hist},
                             measurements=measurements,
                             show_measurement_errors=True,
                             histogram_properties=histogram_properties,
                             save_folder=save_path + '/qcd/',
                             save_as=save_as)
def debug_last_bin():
    '''
        For debugging why the last bin in the problematic variables deviates a
        lot in _one_ of the channels only.
    '''
    file_template = '/hdfs/TopQuarkGroup/run2/dpsData/'
    file_template += 'data/normalisation/background_subtraction/13TeV/'
    file_template += '{variable}/VisiblePS/central/'
    file_template += 'normalised_xsection_{channel}_RooUnfoldSvd{suffix}.txt'
    problematic_variables = ['HT', 'MET', 'NJets', 'lepton_pt']

    for variable in problematic_variables:
        results = {}
        Result = namedtuple('Result',
                            ['before_unfolding', 'after_unfolding', 'model'])
        for channel in ['electron', 'muon', 'combined']:
            input_file_data = file_template.format(
                variable=variable,
                channel=channel,
                suffix='_with_errors',
            )
            input_file_model = file_template.format(
                variable=variable,
                channel=channel,
                suffix='',
            )
            data = read_data_from_JSON(input_file_data)
            data_model = read_data_from_JSON(input_file_model)
            before_unfolding = data['TTJet_measured_withoutFakes']
            after_unfolding = data['TTJet_unfolded']

            model = data_model['powhegPythia8']

            # only use the last bin
            h_before_unfolding = value_errors_tuplelist_to_graph(
                [before_unfolding[-1]], bin_edges_vis[variable][-2:])
            h_after_unfolding = value_errors_tuplelist_to_graph(
                [after_unfolding[-1]], bin_edges_vis[variable][-2:])
            h_model = value_error_tuplelist_to_hist(
                [model[-1]], bin_edges_vis[variable][-2:])

            r = Result(before_unfolding, after_unfolding, model)
            h = Result(h_before_unfolding, h_after_unfolding, h_model)
            results[channel] = (r, h)

        models = {'POWHEG+PYTHIA': results['combined'][1].model}
        h_unfolded = [
            results[channel][1].after_unfolding
            for channel in ['electron', 'muon', 'combined']
        ]
        tmp_hists = spread_x(h_unfolded, bin_edges_vis[variable][-2:])
        measurements = {}
        for channel, hist in zip(['electron', 'muon', 'combined'], tmp_hists):
            value = results[channel][0].after_unfolding[-1][0]
            error = results[channel][0].after_unfolding[-1][1]
            label = '{c_label} ({value:1.2g} $\pm$ {error:1.2g})'.format(
                c_label=channel,
                value=value,
                error=error,
            )
            measurements[label] = hist

        properties = Histogram_properties()
        properties.name = 'normalised_xsection_compare_channels_{0}_{1}_last_bin'.format(
            variable, channel)
        properties.title = 'Comparison of channels'
        properties.path = 'plots'
        properties.has_ratio = True
        properties.xerr = False
        properties.x_limits = (bin_edges_vis[variable][-2],
                               bin_edges_vis[variable][-1])
        properties.x_axis_title = variables_latex[variable]
        properties.y_axis_title = r'$\frac{1}{\sigma}  \frac{d\sigma}{d' + \
            variables_latex[variable] + '}$'
        properties.legend_location = (0.95, 0.40)
        if variable == 'NJets':
            properties.legend_location = (0.97, 0.80)
        properties.formats = ['png']

        compare_measurements(models=models,
                             measurements=measurements,
                             show_measurement_errors=True,
                             histogram_properties=properties,
                             save_folder='plots/',
                             save_as=properties.formats)
def main():

	config = XSectionConfig(13)

	file_for_powhegPythia  = File(config.unfolding_central, 'read')
	file_for_ptReweight_up  = File(config.unfolding_ptreweight_up, 'read')
	file_for_ptReweight_down  = File(config.unfolding_ptreweight_down, 'read')
	file_for_data_template = 'data/normalisation/background_subtraction/13TeV/{variable}/VisiblePS/central/normalisation_combined_patType1CorrectedPFMet.txt'



	for channel in ['combined']:
		for variable in config.variables:
			print variable
		# for variable in ['HT']:
			# Get the central powheg pythia distributions
			_, _, response_central, fakes_central = get_unfold_histogram_tuple(
				inputfile=file_for_powhegPythia,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=True,
				visiblePS=True
			)

			measured_central = asrootpy(response_central.ProjectionX('px',1))
			truth_central = asrootpy(response_central.ProjectionY())


			# Get the reweighted powheg pythia distributions
			_, _, response_reweighted_up, _ = get_unfold_histogram_tuple(
				inputfile=file_for_ptReweight_up,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=False,
				visiblePS=True
			)

			measured_reweighted_up = asrootpy(response_reweighted_up.ProjectionX('px',1))
			truth_reweighted_up = asrootpy(response_reweighted_up.ProjectionY())

			_, _, response_reweighted_down, _ = get_unfold_histogram_tuple(
				inputfile=file_for_ptReweight_down,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=False,
				visiblePS=True
			)

			measured_reweighted_down = asrootpy(response_reweighted_down.ProjectionX('px',1))
			truth_reweighted_down = asrootpy(response_reweighted_down.ProjectionY())

			# Get the data input (data after background subtraction, and fake removal)
			file_for_data = file_for_data_template.format( variable = variable )
			data = read_data_from_JSON(file_for_data)['TTJet']
			data = value_error_tuplelist_to_hist( data, reco_bin_edges_vis[variable] )
			data = removeFakes( measured_central, fakes_central, data )

			# Plot all three

			hp = Histogram_properties()
			hp.name = 'Reweighting_check_{channel}_{variable}_at_{com}TeV'.format(
						channel=channel,
						variable=variable,
						com='13',
			)

			v_latex = latex_labels.variables_latex[variable]
			unit = ''
			if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
			    unit = ' [GeV]'
			hp.x_axis_title = v_latex + unit
			hp.y_axis_title = 'Number of events'
			hp.title = 'Reweighting check for {variable}'.format(variable=v_latex)

			measured_central.Rebin(2)
			measured_reweighted_up.Rebin(2)
			measured_reweighted_down.Rebin(2)
			data.Rebin(2)

			measured_central.Scale( 1 / measured_central.Integral() )
			measured_reweighted_up.Scale( 1 / measured_reweighted_up.Integral() )
			measured_reweighted_down.Scale( 1 / measured_reweighted_down.Integral() )

			data.Scale( 1 / data.Integral() )

			compare_measurements(
					models = {'Central' : measured_central, 'Reweighted Up' : measured_reweighted_up, 'Reweighted Down' : measured_reweighted_down},
					measurements = {'Data' : data},
					show_measurement_errors=True,
					histogram_properties=hp,
					save_folder='plots/unfolding/reweighting_check',
					save_as=['pdf']
					)