示例#1
0
    def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' +
                  CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_MKLDNN:
            print('-- Detected MKLDNN at ' + MKLDNN_LIBRARY + ', ' +
                  MKLDNN_INCLUDE_DIR)
        else:
            print('-- Not using MKLDNN')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        generate_code(ninja_global)

        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)

        # Copy the essential export library to compile C++ extensions.
        if IS_WINDOWS:
            build_temp = self.build_temp

            ext_filename = self.get_ext_filename('_C')
            lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'

            export_lib = os.path.join(build_temp, 'torch', 'csrc',
                                      lib_filename).replace('\\', '/')

            build_lib = self.build_lib

            target_lib = os.path.join(build_lib, 'torch', 'lib',
                                      '_C.lib').replace('\\', '/')

            self.copy_file(export_lib, target_lib)
示例#2
0
    def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' +
                  CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        generate_code(ninja_global)

        if IS_WINDOWS:
            build_temp = self.build_temp
            build_dir = 'torch/csrc'

            ext_filename = self.get_ext_filename('_C')
            lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'

            _C_LIB = os.path.join(build_temp, build_dir,
                                  lib_filename).replace('\\', '/')

            THNN.extra_link_args += [_C_LIB]
            if WITH_CUDA:
                THCUNN.extra_link_args += [_C_LIB]
            else:
                # To generate .obj files for AutoGPU for the export class
                # a header file cannot build, so it has to be copied to someplace as a source file
                if not os.path.exists("torch/csrc/generated"):
                    os.mkdir("torch/csrc/generated")
                if os.path.exists("torch/csrc/generated/AutoGPU_cpu_win.cpp"):
                    os.remove("torch/csrc/generated/AutoGPU_cpu_win.cpp")
                shutil.copyfile("torch/csrc/cuda/AutoGPU.h",
                                "torch/csrc/generated/AutoGPU_cpu_win.cpp")
        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
示例#3
0
文件: setup.py 项目: toby4548/pytorch
    def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' + CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_MKLDNN:
            print('-- Detected MKLDNN at ' + MKLDNN_LIBRARY + ', ' + MKLDNN_INCLUDE_DIR)
        else:
            print('-- Not using MKLDNN')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        generate_code(ninja_global)

        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)

        # Copy the essential export library to compile C++ extensions.
        if IS_WINDOWS:
            build_temp = self.build_temp

            ext_filename = self.get_ext_filename('_C')
            lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'

            export_lib = os.path.join(
                build_temp, 'torch', 'csrc', lib_filename).replace('\\', '/')

            build_lib = self.build_lib

            target_lib = os.path.join(
                build_lib, 'torch', 'lib', '_C.lib').replace('\\', '/')

            self.copy_file(export_lib, target_lib)
示例#4
0
    def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' + CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        generate_code(ninja_global)

        if IS_WINDOWS:
            build_temp = self.build_temp
            build_dir = 'torch/csrc'

            ext_filename = self.get_ext_filename('_C')
            lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'

            _C_LIB = os.path.join(build_temp, build_dir, lib_filename).replace('\\', '/')

            THNN.extra_link_args += [_C_LIB]
            if WITH_CUDA:
                THCUNN.extra_link_args += [_C_LIB]
            else:
                # To generate .obj files for AutoGPU for the export class
                # a header file cannot build, so it has to be copied to someplace as a source file
                if not os.path.exists("torch/csrc/generated"):
                    os.mkdir("torch/csrc/generated")
                if os.path.exists("torch/csrc/generated/AutoGPU_cpu_win.cpp"):
                    os.remove("torch/csrc/generated/AutoGPU_cpu_win.cpp")
                shutil.copyfile("torch/csrc/cuda/AutoGPU.h", "torch/csrc/generated/AutoGPU_cpu_win.cpp")
        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
示例#5
0
    def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' +
                  CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        # Copy headers necessary to compile C++ extensions.
        self.copy_tree('torch/csrc', 'torch/lib/include/torch/csrc/')
        self.copy_tree('torch/lib/pybind11/include/pybind11/',
                       'torch/lib/include/pybind11')
        self.copy_file('torch/torch.h', 'torch/lib/include/torch/torch.h')

        generate_code(ninja_global)

        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
示例#6
0
    def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' +
                  CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_MKLDNN:
            print('-- Detected MKLDNN at ' + MKLDNN_LIBRARY + ', ' +
                  MKLDNN_INCLUDE_DIR)
        else:
            print('-- Not using MKLDNN')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        generate_code(ninja_global)

        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)