def gen_onet_data(data_dir,
                  anno_file,
                  pnet_model_file,
                  rnet_model_file,
                  prefix_path='',
                  use_cuda=True,
                  vis=False):
    mtcnn_detector = MtcnnDetector(p_model_path=pnet_model_file,
                                   r_model_path=rnet_model_file,
                                   o_model_path=None,
                                   min_face_size=12,
                                   use_cuda=True)

    imagedb = ImageDB(anno_file, mode="test", prefix_path=prefix_path)
    imdb = imagedb.load_imdb()
    image_reader = TestImageLoader(imdb, 1, False)

    all_boxes = list()
    batch_idx = 0

    for databatch in image_reader:
        if batch_idx % 100 == 0:
            print("%d images done" % batch_idx)
        im = databatch
        t = time.time()
        # detect an image by pnet and rnet
        p_boxes, p_boxes_align = mtcnn_detector.detect_pnet(im=im)
        boxes, boxes_align = mtcnn_detector.detect_rnet(im=im,
                                                        dets=p_boxes_align)
        if boxes_align is None:
            all_boxes.append(np.array([]))
            batch_idx += 1
            continue
        if vis:
            vision.vis_face(im, boxes_align)

        t1 = time.time() - t
        print('time cost for image ', batch_idx, '/', image_reader.size, ': ',
              t1)
        all_boxes.append(boxes_align)
        batch_idx += 1

    save_path = config.TRAIN_DATA_DIR
    if not os.path.exists(save_path):
        os.mkdir(save_path)

    save_file = os.path.join(save_path,
                             "pnet_rnet_detections_%d.pkl" % int(time.time()))

    with open(save_file, 'wb') as f:
        pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)

    # save_file = '/home/liujing/Codes/MTCNN/data/pnet_detections_1532582821.pkl'
    get_onet_sample_data(data_dir, anno_file, save_file, prefix_path)
示例#2
0
def gen_rnet_data(data_dir,
                  anno_file,
                  pnet_model_file,
                  prefix_path='',
                  use_cuda=True,
                  vis=False):
    # load the pnet and pnet_detector ,利用刚刚训练的pnet网络生成rnet的训练数据
    mtcnn_detector = MtcnnDetector(
        p_model_path=pnet_model_file,  # pnet_model_file自行设置
        r_model_path=None,
        o_model_path=None,
        min_face_size=12,
        use_cuda=True)
    device = mtcnn_detector.device

    # 生成rnet网络的训练集
    imagedb = ImageDB(anno_file, mode="test", prefix_path=prefix_path)
    imdb = imagedb.load_imdb()
    image_reader = TestImageLoader(imdb, 1, False)

    all_boxes = []
    batch_idx = 0

    for databatch in image_reader:
        if batch_idx % 100 == 0:
            print("%d images done" % batch_idx)
        im = databatch
        t = time.time()
        boxes, boxes_align = mtcnn_detector.detect_pnet(im)
        if boxes_align is None:
            all_boxes.append(np.array([]))
            continue
        if vis:
            vision.vis_face(im, boxes_align)

        t1 = time.time() - t
        print('time cost for image {} / {} : {:.4f}'.format(
            batch_idx, image_reader.size, t1))
        all_boxes.append(boxes_align)
        batch_idx += 1

    save_path = config.TRAIN_DATA_DIR
    if not os.path.exists(save_path):
        os.mkdir(save_path)

    save_file = os.path.join(save_path,
                             "pnet_detections_%d.pkl" % int(time.time()))

    with open(save_file, 'wb') as f:
        pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)

    # save_file = '/home/liujing/Codes/MTCNN/data/pnet_detections_1532530263.pkl'
    get_rnet_sample_data(data_dir, anno_file, save_file, prefix_path)
    if attrs != []:
        for a in attrs:
            txt = plate_color[a[0]] + ' ' + plate_layer[
                a[1]] + ' ' + plate_type[a[2]]
            cv2.putText(img, txt, (int(bboxs[i, 0]), int(bboxs[i, 1])),
                        cv2.FONT_HERSHEY_COMPLEX, 2, (0, 0, 255), 5)
            i += 1
    return img


if __name__ == '__main__':
    mtcnn_detector = MtcnnDetector(
        p_model_path=
        "./plate_annotations/pnet/log_bs512_lr0.010_0930/check_point/model_050.pth",
        r_model_path=
        "./plate_annotations/rnet/log_bs512_lr0.001_0930/check_point/model_050.pth",
        o_model_path=
        "./plate_annotations/onet/log_bs512_lr0.001_0930/check_point/model_050.pth",
        min_face_size=60,
        use_cuda=False)  # 加载模型参数,构造检测器
    logger.info("Init the MtcnnDetector.")
    project_root = pathlib.Path()
    inputPath = project_root / "data" / "test_new_energy"
    outputPath = project_root / "data" / "test_new_energy/results"
    outputPath.mkdir(exist_ok=True)

    start = time.time()
    corr = 0
    count = 0
    for num, input_img_filename in enumerate(inputPath.iterdir()):
        logger.info("Start to process No.{} image.".format(num))
示例#4
0
        cv2.rectangle(img, (int(bboxs[i, 0]), int(bboxs[i, 1])),
                      (int(bboxs[i, 2]), int(bboxs[i, 3])), (0, 255, 0), 3)
    for p in landmarks:
        for i in range(5):
            cv2.circle(img, (int(p[2 * i]), int(p[2 * i + 1])), 3, (0, 0, 255),
                       -1)
    return img


if __name__ == '__main__':
    # set pnet, rnet, onet model path as your training model path
    mtcnn_detector = MtcnnDetector(
        p_model_path=
        "./results/pnet/log_bs512_lr0.010_072402/check_point/model_050.pth",
        r_model_path=
        "./results/rnet/log_bs512_lr0.001_072502/check_point/model_050.pth",
        o_model_path=
        "./results/onet/log_bs512_lr0.001_072602/check_point/model_050.pth",
        min_face_size=24,
        use_cuda=True)  # 加载模型参数,构造检测器
    logger.info("Init the MtcnnDetector.")
    project_root = pathlib.Path()
    inputPath = project_root / "data" / "test_images"
    outputPath = project_root / "data" / "you_result"
    outputPath.mkdir(exist_ok=True)

    with torch.no_grad():
        start = time.time()
        for num, input_img_filename in enumerate(inputPath.iterdir()):
            logger.info("Start to predict No.{} image.".format(num))
            img_name = input_img_filename.name
        file_name = 'FDDB-folds/FDDB-folds-%02d.txt' % (n + 1)
        file_name = os.path.join(data_dir, file_name)
        fid = open(file_name, 'r')
        image_names = []
        for im_name in fid.readlines():
            image_names.append(im_name.strip('\n'))
        imdb.append(image_names)
    return imdb


if __name__ == "__main__":
    mtcnn_detector = MtcnnDetector(
        p_model_path=
        './results/pnet/log_bs512_lr0.010_072402/check_point/model_050.pth',
        r_model_path=
        './results/rnet/log_bs512_lr0.001_072502/check_point/model_050.pth',
        o_model_path=
        './results/pnet/log_bs512_lr0.001_0726402/check_point/model_050.pth',
        min_face_size=12,
        use_cuda=False)
    # logger.info("Init the MtcnnDetector.")
    imdb = get_imdb_fddb(data_dir)
    nfold = len(imdb)

    for i in range(nfold):
        image_names = imdb[i]
        dets_file_name = os.path.join(out_dir,
                                      'FDDB-det-fold-%02d.txt' % (i + 1))
        fid = open(dets_file_name, 'w')
        # image_names_abs = [os.path.join(data_dir, 'originalPics', image_name + '.jpg') for image_name in image_names]