nargs='?', default=True, help='Use CUDNN.') parser.add_argument("--local_rank", default=0, type=int) args = parser.parse_args() configer = Configer(args_parser=args) if args.seed is not None: random.seed(args.seed + args.local_rank) torch.manual_seed(args.seed + args.local_rank) cudnn.enabled = True cudnn.benchmark = args.cudnn abs_data_dir = os.path.expanduser(configer.get('data', 'data_dir')) configer.update('data.data_dir', abs_data_dir) if configer.get('gpu') is not None and not configer.get( 'network.distributed', default=False): os.environ["CUDA_VISIBLE_DEVICES"] = ','.join( str(gpu_id) for gpu_id in configer.get('gpu')) if configer.get('network', 'norm_type') is None: configer.update('network.norm_type', 'batchnorm') if torch.cuda.device_count() <= 1 or configer.get('network.distributed', default=False): configer.update('network.gather', True) project_dir = os.path.dirname(os.path.realpath(__file__))
nargs='?', default=True, help='Use CUDNN.') parser.add_argument("--local_rank", default=0, type=int) args = parser.parse_args() configer = Configer(args_parser=args) if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = args.cudnn abs_data_dir = os.path.expanduser(configer.get('data', 'data_dir')) configer.update('data.data_dir', abs_data_dir) if configer.get('gpu') is not None and not configer.get( 'network.distributed', default=False): os.environ["CUDA_VISIBLE_DEVICES"] = ','.join( str(gpu_id) for gpu_id in configer.get('gpu')) if configer.get('network', 'norm_type') is None: configer.update('network.norm_type', 'batchnorm') if torch.cuda.device_count() <= 1 or configer.get('network.distributed', default=False): configer.update('network.gather', True) if configer.get('phase') == 'train':