def filter(g, traceroutes, filters=['sh', 'loop', 'ex', 'vf', 'lp'], first_edge=True): logger.info('Traceroutes: %d', len(traceroutes)) # remove empty traces traceroutes = [x for x in traceroutes if len(x) > 0] logger.info('Non empty traceroutes: %d', (len(traceroutes))) traceroutes = [x for x in traceroutes if len(x) > 1] logger.info('Larger than one hop traceroutes: %d', (len(traceroutes))) # remove traces with unknown nodes traceroutes, _ = vft.trace_clean(g, traceroutes) logger.info('Ignored: %d', _) traceroutes = vft.trace_in_vertex_id(g, traceroutes) logger.info('Trace count: %d', len(traceroutes)) progress = progressbar1.AnimatedProgressBar(end=len(traceroutes), width=15) good_traceroutes = traceroutes[:] if 'sh' in filters: logger.debug('Remove short traces') good_traceroutes = [x for x in good_traceroutes if len(x) >= 3] logger.debug('Remained: %d', len(good_traceroutes)) if 'loop' in filters: logger.debug('Remove traces with loops') good_traceroutes = [ x for x in good_traceroutes if len(set(x)) == len(x) ] logger.debug('Remained: %d' % len(good_traceroutes)) if 'ex' in filters: logger.debug('Remove non existent traces') good_traceroutes = [ x for x in good_traceroutes if vft.trace_exists(g, x) ] logger.debug('Remained: %d', len(good_traceroutes)) if 'vf' in filters: logger.debug('Remove non vf traces') good_traceroutes = [ x for x in good_traceroutes if vft.is_valley_free(g, x) ] logger.debug('Remained: %d' % len(good_traceroutes)) if 'lp' in filters: logger.debug('Remove non lp traces') good_traceroutes = [ x for x in good_traceroutes if vft.is_local_preferenced(g, x, first_edge=first_edge) ] logger.debug('Remained: %d' % len(good_traceroutes)) # convert back node ids to node names good_traceroutes = [[g.vs[id]["name"] for id in trace] for trace in good_traceroutes] logger.debug(len(good_traceroutes)) return good_traceroutes
def vf_attributes(g, trace, vfmode, get_lp_soft, get_lp_hard, vf_g=None): is_vf = int(vft.is_valley_free(g, trace, vfmode)) is_lp_soft = -1 is_lp_hard = -1 if is_vf: if get_lp_soft: lp_soft = vft.is_local_preferenced(g, trace, vf_g=vf_g, first_edge=True, vfmode=vfmode) is_lp_soft = int(lp_soft) else: is_lp_prelabeled_soft = -1 if get_lp_hard: lp_hard = vft.is_local_preferenced(g, trace, vf_g=vf_g, first_edge=False, vfmode=vfmode) is_lp_hard = int(lp_hard) else: is_lp_hard = -1 return (is_vf, is_lp_soft, is_lp_hard)
def ba_generator(ba_graph, sh_paths, stretch, vf_g, progressbar=False): vf_count = 0 trace_count = 0 lp_count = 0 progress = progressbar1.DummyProgressBar(end=10, width=15) if progressbar: progress = progressbar1.AnimatedProgressBar(end=len(sh_paths), width=15) for (s, t), shl in sh_paths: progress += 1 progress.show_progress() logger.debug('SH from %s to %s is %d' % (s, t, shl)) random_route = helpers.random_route_walk(ba_graph, s, t, shl + stretch) logger.debug('Random route: %s' % random_route) real_stretch = len(random_route) - shl if real_stretch != stretch: continue trace_count += 1 is_vf = vft.is_valley_free(ba_graph, random_route, vfmode=vft.CLOSENESS) logger.debug( 'Trace edge dir: %s' % vft.trace_to_string(ba_graph, random_route, vfmode=vft.CLOSENESS)) logger.debug('Is VF: %s' % is_vf) if is_vf: is_lp = vft.is_local_preferenced(ba_graph, random_route, first_edge=True, vfmode=vft.CLOSENESS, vf_g=vf_g) else: is_lp = 0 logger.debug('Is LP: %s' % is_lp) vf_count += int(is_vf) lp_count += int(is_lp) logger.info('Stretch %d' % stretch) logger.info('Trace count: %d' % trace_count) logger.info('VF count: %d' % vf_count) logger.info('LP count: %d' % lp_count) return (stretch, trace_count, vf_count, lp_count)
def purify(g, meta_original, out, count=1000, try_per_race=1, show_progress=False, with_lp=True): empty = 0 # remove traces with already calculated random paths logger.warn('[r]ONLY NOT FILLED PATHS[/]') meta_filled = [ x for x in meta_original if helpers.RANDOM_WALK_RUN_COUNT not in x ] # Filter if interested only in routes of stretch 1 # meta_filled = [x for x in meta_original # if x[helpers.TRACE_LEN]-x[helpers.SH_LEN] == 1] ## traces with a maximum stretch # logger.warn('[r]!!!ONLY WITH STRETCH[/]') # meta = [x for x in meta if x[helpers.STRETCH] > -1] # # shorter meta records # logger.warn('[r]!!!ONLY SHORT TRACES[/]') # meta = [x for x in meta if len(x[helpers.TRACE]) < 5] # meta_map = {tuple(x[helpers.TRACE]): x for x in meta_filled} logger.info('All trace count: %d' % len(meta_filled)) tr_count = min(len(meta_filled), count) meta_random = random.sample(meta_filled, tr_count) logger.info('Chosen subset count: %d' % len(meta_random)) # real_vf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 1] # real_nonvf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 0] # assert len(real_nonvf_degree) == tr_count - len(real_vf_degree) # real_vf_prelabeled = [x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 1] # real_nonvf_prelabeled = [x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 0] # assert len(real_nonvf_prelabeled) == tr_count - len(real_vf_prelabeled) # real_vf_closeness = [x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 1] # real_nonvf_closeness = [x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 0] # assert len(real_nonvf_closeness) == tr_count - len(real_vf_closeness) # logger.info('Real vf degree: %f[%d]' % ((len(real_vf_degree) / float(tr_count), # len(real_vf_degree)))) # logger.info('Real nonvf degree: %f[%d]' % ((len(real_nonvf_degree) / float(tr_count), # len(real_nonvf_degree)))) # logger.info('Real vf prelabeled: %f[%d]' % ((len(real_vf_prelabeled) / float(tr_count), # len(real_vf_prelabeled)))) # logger.info('Real nonvf prelabeled: %f[%d]' % ((len(real_nonvf_prelabeled) / float(tr_count), # len(real_nonvf_prelabeled)))) # logger.info('Real vf closeness: %f[%d]' % ((len(real_vf_closeness)/float(tr_count), len(real_vf_closeness)))) # logger.info('Real nonvf closeness: %f[%d]' % ((len(real_nonvf_closeness)/float(tr_count), len(real_nonvf_closeness)))) # traceroutes = [x[helpers.TRACE] for x in meta_random] # traceroutes = vft.trace_in_vertex_id(g, traceroutes) try: meta_random[0][helpers.TRACE] except Exception: meta_random = [{helpers.TRACE: x} for x in meta_random] progress = progressbar1.DummyProgressBar(end=10, width=15) if show_progress: progress = progressbar1.AnimatedProgressBar(end=len(meta_random), width=15) stretch_list = [] max_stretch = max( [x[helpers.TRACE_LEN] - x[helpers.SH_LEN] for x in meta_random]) for stretch in range(0, max_stretch + 1): metas = [ x for x in meta_random if x[helpers.TRACE_LEN] - x[helpers.SH_LEN] == stretch ] stretch_list.extend(list(repeat(stretch, len(metas)))) # print(stretch_list) lenghts = random.shuffle(stretch_list) strx_array = [] for idx, trace_meta in enumerate(meta_random): progress += 1 progress.show_progress() # print(trace_meta[helpers.TRACE]) shl = trace_meta[helpers.SH_LEN] trace = vft.trace_in_vertex_id(g, [ trace_meta[helpers.TRACE], ]) if len(trace) != 1: print 'PROBLEM' print trace_meta continue trace = trace[0] # print(trace) random_walk_closeness_route_vf = 0 random_walk_closeness_route_lp_soft = 0 random_walk_closeness_route_lp_hard = 0 random_walk_degree_route_vf = 0 random_walk_degree_route_lp_soft = 0 random_walk_degree_route_lp_hard = 0 random_walk_prelabeled_route_vf = 0 random_walk_prelabeled_route_lp_soft = 0 random_walk_prelabeled_route_lp_hard = 0 s, t = trace[0], trace[-1] for counter in xrange(0, try_per_race): # random_path = helpers.random_route_walk(g, s, t, len(trace)) # Modified random_path = helpers.random_route_walk( g, s, t, shl + stretch_list[idx]) # Modified if len(random_path) == 0: empty += 1 if vft.is_valley_free(g, random_path, vfmode=vft.CLOSENESS): random_walk_closeness_route_vf += 1 if (len(random_path) == shl + 1): strx_array.append(1) if with_lp: lp_soft = vft.is_local_preferenced(g, random_path, first_edge=True, vfmode=vft.CLOSENESS) lp_hard = vft.is_local_preferenced(g, random_path, first_edge=False, vfmode=vft.CLOSENESS) if lp_soft: random_walk_closeness_route_lp_soft += 1 if lp_hard: random_walk_closeness_route_lp_hard += 1 else: if (len(random_path) == shl + 1): strx_array.append(0) # if vft.is_valley_free(g, random_path, vfmode=vft.DEGREE): # random_walk_degree_route_vf += 1 # if with_lp: # lp_soft = vft.is_local_preferenced(g, random_path, # first_edge=True, # vfmode=vft.DEGREE) # lp_hard = vft.is_local_preferenced(g, random_path, # first_edge=False, # vfmode=vft.DEGREE) # if lp_soft: # random_walk_degree_route_lp_soft += 1 # if lp_hard: # random_walk_degree_route_lp_hard += 1 # if vft.is_valley_free(g, random_path, vfmode=vft.PRELABELED): # random_walk_prelabeled_route_vf += 1 # if with_lp: # lp_soft = vft.is_local_preferenced(g, random_path, # first_edge=True, # vfmode=vft.PRELABELED) # lp_hard = vft.is_local_preferenced(g, random_path, # first_edge=False, # vfmode=vft.PRELABELED) # if lp_soft: # random_walk_prelabeled_route_lp_soft += 1 # if lp_hard: # random_walk_prelabeled_route_lp_hard += 1 # sanity check # if random_path[0] != s or random_path[-1] != t: # logger.error('ALERT') if len(random_path) != len(set(random_path)): logger.error('LENGTH ERROR') extra_meta = { helpers.RANDOM_WALK_RUN_COUNT: try_per_race, helpers.RANDOM_WALK_VF_CLOSENESS_ROUTE: random_walk_closeness_route_vf, helpers.RANDOM_WALK_VF_DEGREE_ROUTE: random_walk_degree_route_vf, helpers.RANDOM_WALK_VF_PRELABELED_ROUTE: random_walk_prelabeled_route_vf, } if with_lp: extra_meta.update({ helpers.RANDOM_WALK_LP_SOFT_CLOSENESS_ROUTE: random_walk_closeness_route_lp_soft, helpers.RANDOM_WALK_LP_HARD_CLOSENESS_ROUTE: random_walk_closeness_route_lp_hard, helpers.RANDOM_WALK_LP_SOFT_DEGREE_ROUTE: random_walk_degree_route_lp_soft, helpers.RANDOM_WALK_LP_HARD_DEGREE_ROUTE: random_walk_degree_route_lp_hard, helpers.RANDOM_WALK_LP_SOFT_PRELABELED_ROUTE: random_walk_prelabeled_route_lp_soft, helpers.RANDOM_WALK_LP_HARD_PRELABELED_ROUTE: random_walk_prelabeled_route_lp_hard }) trace_meta.update(extra_meta) ## save modified meta # all meta_* get only references from meta_original helpers.save_to_json(out, meta_random) # meta_mod = [x for x in meta_map.itervalues()] # helpers.save_to_json(out, meta_mod) # calculate results # real_vf = [x[helpers.IS_VF_CLOSENESS] for x in meta_random] # real_vf_ratio = np.mean(real_vf) random_walk_vf_ratio_per_element = [ x[helpers.RANDOM_WALK_VF_CLOSENESS_ROUTE] / x[helpers.RANDOM_WALK_RUN_COUNT] for x in meta_random ] random_walk_vf_ratio = np.mean(random_walk_vf_ratio_per_element) # print results logger.info('') logger.info('Empty: %d' % empty) logger.info('Tested trace count: %d' % len(meta_random)) # logger.info('VF ratio in tested traces: %f' % real_vf_ratio) logger.info('VF ratio in random walks: %f' % random_walk_vf_ratio) logger.info('VF ratio in random walks for path stretch 1: %f' % np.mean(strx_array))
def purify(g, traceroutes, flags, show_progress=False): results = list() # remove traces with unknown nodes traceroutes = vft.trace_in_vertex_id(g, traceroutes) # generate valley-free graph if flags[FLAG_PRELABELED]: logger.info('Generate VF_G_PRE') vf_g_pre = vft.convert_to_vf(g, vfmode=vft.PRELABELED) else: logger.info('Skip prelabeled graph') if flags[FLAG_DEGREE]: logger.info('Generate VF_G_DEGREE') vf_g_degree = vft.convert_to_vf(g, vfmode=vft.DEGREE) else: logger.info('Skip degree graph') if flags[FLAG_CLOSENESS]: logger.info('Generate VF_G_CLOSENESS') vf_g_closeness = vft.convert_to_vf(g, vfmode=vft.CLOSENESS) else: logger.info('Skip closeness graph') progress = progressbar1.DummyProgressBar(end=10, width=15) if show_progress: progress = progressbar1.AnimatedProgressBar(end=len(traceroutes), width=15) for trace in traceroutes: progress += 1 progress.show_progress() logger.debug('Current trace: %s' % ([g.vs[x]['name'] for x in trace])) if len(trace) == 1: continue s, t = trace[0], trace[-1] is_vf_prelabeled = -1 is_lp_prelabeled_hard = -1 is_lp_prelabeled_soft = -1 is_vf_degree = -1 is_lp_degree_hard = -1 is_lp_degree_soft = -1 is_vf_closeness = -1 is_lp_closeness_hard = -1 is_lp_closeness_soft = -1 trace_len = len(trace) sh_len = g.shortest_paths(s, t, mode=i.OUT)[0][0] sh_len += 1 # convert hop count to node Counter if flags[FLAG_PRELABELED]: is_vf_prelabeled = vft.is_valley_free(g, trace, vft.PRELABELED) is_vf_prelabeled = int(is_vf_prelabeled) if is_vf_prelabeled: if flags[FLAG_LP_SOFT]: lp_soft = vft.is_local_preferenced(g, trace, vf_g=vf_g_pre, first_edge=True, vfmode=vft.PRELABELED) is_lp_prelabeled_soft = 1 if lp_soft else 0 else: is_lp_prelabeled_soft = -1 if flags[FLAG_LP_HARD]: lp_hard = vft.is_local_preferenced(g, trace, vf_g=vf_g_pre, first_edge=False, vfmode=vft.PRELABELED) is_lp_prelabeled_hard = 1 if lp_hard else 0 else: is_lp_prelabeled_hard = -1 if flags[FLAG_DEGREE]: is_vf_degree = vft.is_valley_free(g, trace, vft.DEGREE) is_vf_degree = int(is_vf_degree) if is_vf_degree: if flags[FLAG_LP_SOFT]: lp_soft = vft.is_local_preferenced(g, trace, vf_g=vf_g_degree, first_edge=True, vfmode=vft.DEGREE) is_lp_degree_soft = 1 if lp_soft else 0 else: is_lp_degree_soft = -1 if flags[FLAG_LP_HARD]: lp_hard = vft.is_local_preferenced(g, trace, vf_g=vf_g_degree, first_edge=False, vfmode=vft.DEGREE) is_lp_degree_hard = 1 if lp_hard else 0 else: is_lp_degree_hard = -1 if flags[FLAG_CLOSENESS]: is_vf_closeness = vft.is_valley_free(g, trace, vft.CLOSENESS) is_vf_closeness = int(is_vf_closeness) if is_vf_closeness: if flags[FLAG_LP_SOFT]: lp_soft = vft.is_local_preferenced(g, trace, vf_g=vf_g_closeness, first_edge=True, vfmode=vft.CLOSENESS) is_lp_closeness_soft = 1 if lp_soft else 0 else: is_lp_closeness_soft = -1 if flags[FLAG_LP_HARD]: lp_hard = vft.is_local_preferenced(g, trace, vf_g=vf_g_closeness, first_edge=False, vfmode=vft.CLOSENESS) is_lp_closeness_hard = 1 if lp_hard else 0 else: is_lp_closeness_hard = -1 if False: sh_vf_len = vft.get_shortest_vf_route(g, s, t, mode='vf', vf_g=vf_g_pre, _all=True, vfmode=vft.PRELABELED) # ugy tunik, mintha nem mindig lenne pontos? fentartassal kezelendo # ez az ertek azert is kerult bele, hogy ellenorizzuk in_vf_prediction = 1 if sh_vf_len and trace in sh_vf_len else 0 else: sh_vf_len = -1 in_vf_prediction = -1 sh_vf_len = len(sh_vf_len[0]) if isinstance(sh_vf_len, list) else -1 percentage_stretch = trace_len / float(sh_len) named_trace = [g.vs[_id]["name"] for _id in trace] result = { helpers.TRACE: named_trace, helpers.TRACE_LEN: trace_len, helpers.SH_LEN: sh_len, helpers.SH_VF_LEN: sh_vf_len, helpers.IS_VF_PRELABELED: is_vf_prelabeled, helpers.IS_VF_DEGREE: is_vf_degree, helpers.IS_VF_CLOSENESS: is_vf_closeness, helpers.HOP_STRETCH: trace_len - sh_len, helpers.PERC_STRETCH: percentage_stretch, helpers.IN_VF_PRED: in_vf_prediction, helpers.IS_LP_SOFT_PRELABELED: is_lp_prelabeled_soft, helpers.IS_LP_HARD_PRELABELED: is_lp_prelabeled_hard, helpers.IS_LP_SOFT_DEGREE: is_lp_degree_soft, helpers.IS_LP_HARD_DEGREE: is_lp_degree_hard, helpers.IS_LP_SOFT_CLOSENESS: is_lp_closeness_soft, helpers.IS_LP_HARD_CLOSENESS: is_lp_closeness_hard, } results.append(result) # print >> sys.stderr, ('TRACE\tTRACE_LEN\tSH_LEN\tSH_VF_LEN\tIS_VF', # '\tSTRETCH\tIN_VF_PREDICTION\tIS_LP_F\tIS_LP_ALL') # for result in results: # result = [str(r) for r in result] # print >> sys.stderr, '\t'.join(result) # statistic = statistics.purify(g, results, # 'nc+ec+tc+rt+vf+vf_closeness+pred+lp_soft_prelabeled+lp_hard_prelabeled+lp_soft_degree+lp_hard_degree+lp_soft_closeness+lp_hard_closeness'.split('+')) # statistics.stat_printer(statistic) return results
def test_soft_lp_check(self): self.sample_graph.add_vertices([ 'N8', ]) self.prelabeled[8] = 0.5 self.closenesses[8] = 0.5 self.sample_graph.add_edges([['N5', 'N7'], ['N3', 'N7'], ['N8', 'N5'], ['N6', 'N8'], ['N7', 'N4']]) lp_hard_routes = [['N0', 'N5', 'N6', 'N2'], ['N5', 'N6'], ['N4', 'N6', 'N2'], ['N7', 'N4', 'N6', 'N3']] # Az egyetlen kulonbseg a soft es hard lp kozott # csak akkor johet elo, mikor U ellel kezdunk, es # a kov. hopnal lehet fel vagy le/peer elen menni # A soft ekkor mehet tovabb fel, a hard csak peer/le # elet valaszthat. lp_soft_routes = [['N0', 'N5', 'N4', 'N6', 'N2'], ['N1', 'N5', 'N6', 'N8']] non_lp = [['N5', 'N4', 'N6'], ['N5', 'N6', 'N8'], ['N5', 'N4', 'N6', 'N2']] vf_g = vft.convert_to_vf(self.sample_graph, vfmode=vft.CLOSENESS) for trace in lp_hard_routes: is_lp_hard = vft.is_local_preferenced(self.sample_graph, trace, vf_g=vf_g, first_edge=False, vfmode=vft.CLOSENESS) is_lp_soft = vft.is_local_preferenced(self.sample_graph, trace, vf_g=vf_g, first_edge=True, vfmode=vft.CLOSENESS) self.assertTrue(is_lp_hard) self.assertTrue(is_lp_soft) for trace in lp_soft_routes: is_lp_hard = vft.is_local_preferenced(self.sample_graph, trace, vf_g=vf_g, first_edge=False, vfmode=vft.CLOSENESS) is_lp_soft = vft.is_local_preferenced(self.sample_graph, trace, vf_g=vf_g, first_edge=True, vfmode=vft.CLOSENESS) self.assertFalse(is_lp_hard) self.assertTrue(is_lp_soft) for trace in non_lp: is_lp_hard = vft.is_local_preferenced(self.sample_graph, trace, vf_g=vf_g, first_edge=False, vfmode=vft.CLOSENESS) is_lp_soft = vft.is_local_preferenced(self.sample_graph, trace, vf_g=vf_g, first_edge=True, vfmode=vft.CLOSENESS) self.assertFalse(is_lp_hard) self.assertFalse(is_lp_soft)
def purify(g, meta_original, out, count=1000, try_per_race=1, show_progress=False): empty = 0 # remove traces with already calculated random paths logger.warn('[r]ONLY NOT FILLED PATHS[/]') meta_filled = [ x for x in meta_original if helpers.RANDOM_NONVF_WALK_RUN_COUNT not in x ] logger.info('All trace count: %d' % len(meta_filled)) tr_count = min(len(meta_filled), count) meta_random = random.sample(meta_filled, tr_count) logger.info('Chosen subset count: %d' % len(meta_random)) real_vf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 1] real_nonvf_degree = [ x for x in meta_random if x[helpers.IS_VF_DEGREE] == 0 ] assert len(real_nonvf_degree) == tr_count - len(real_vf_degree) real_vf_prelabeled = [ x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 1 ] real_nonvf_prelabeled = [ x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 0 ] assert len(real_nonvf_prelabeled) == tr_count - len(real_vf_prelabeled) real_vf_closeness = [ x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 1 ] real_nonvf_closeness = [ x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 0 ] assert len(real_nonvf_closeness) == tr_count - len(real_vf_closeness) logger.info('Real vf degree: %f[%d]' % ((len(real_vf_degree) / float(tr_count), len(real_vf_degree)))) logger.info( 'Real nonvf degree: %f[%d]' % ((len(real_nonvf_degree) / float(tr_count), len(real_nonvf_degree)))) logger.info( 'Real vf prelabeled: %f[%d]' % ((len(real_vf_prelabeled) / float(tr_count), len(real_vf_prelabeled)))) logger.info('Real nonvf prelabeled: %f[%d]' % ((len(real_nonvf_prelabeled) / float(tr_count), len(real_nonvf_prelabeled)))) logger.info( 'Real vf closeness: %f[%d]' % ((len(real_vf_closeness) / float(tr_count), len(real_vf_closeness)))) logger.info('Real nonvf closeness: %f[%d]' % ((len(real_nonvf_closeness) / float(tr_count), len(real_nonvf_closeness)))) progress = progressbar1.DummyProgressBar(end=10, width=15) if show_progress: progress = progressbar1.AnimatedProgressBar(end=len(meta_random), width=15) for trace_meta in meta_random: progress += 1 progress.show_progress() trace = vft.trace_in_vertex_id(g, [ trace_meta[helpers.TRACE], ]) if len(trace) != 1: logger.error('PROBLEM') logger.error('%s' % trace_meta) continue trace = trace[0] random_nonvf_walk_closeness_route_count = 0 random_nonvf_walk_closeness_route_len = [] random_nonvf_walk_degree_route_count = 0 random_nonvf_walk_degree_route_len = [] random_nonvf_walk_prelabeled_route_count = 0 random_nonvf_walk_prelabeled_route_len = [] random_nonvf_walk_lp_soft_closeness_route_count = 0 random_nonvf_walk_lp_soft_degree_route_count = 0 random_nonvf_walk_lp_soft_prelabeled_route_count = 0 random_nonvf_walk_lp_hard_closeness_route_count = 0 random_nonvf_walk_lp_hard_degree_route_count = 0 random_nonvf_walk_lp_hard_prelabeled_route_count = 0 s, t = trace[0], trace[-1] for counter in xrange(0, try_per_race): isvf, random_path = helpers.random_nonvf_route( g, s, t, len(trace), vfmode=vft.CLOSENESS) assert len(random_path) > 0 if isvf: random_nonvf_walk_closeness_route_count += 1 lp_soft = vft.is_local_preferenced(g, trace, first_edge=True, vfmode=vft.CLOSENESS) lp_hard = vft.is_local_preferenced(g, trace, first_edge=False, vfmode=vft.CLOSENESS) if lp_soft: random_nonvf_walk_lp_soft_closeness_route_count += 1 if lp_hard: random_nonvf_walk_lp_hard_closeness_route_count += 1 random_nonvf_walk_closeness_route_len.append(len(random_path)) isvf, random_path = helpers.random_nonvf_route(g, s, t, len(trace), vfmode=vft.DEGREE) assert len(random_path) > 0 if isvf: random_nonvf_walk_degree_route_count += 1 lp_soft = vft.is_local_preferenced(g, trace, first_edge=True, vfmode=vft.DEGREE) lp_hard = vft.is_local_preferenced(g, trace, first_edge=False, vfmode=vft.DEGREE) if lp_soft: random_nonvf_walk_lp_soft_degree_route_count += 1 if lp_hard: random_nonvf_walk_lp_hard_degree_route_count += 1 random_nonvf_walk_degree_route_len.append(len(random_path)) isvf, random_path = helpers.random_nonvf_route( g, s, t, len(trace), vfmode=vft.PRELABELED) assert len(random_path) > 0 if isvf: random_nonvf_walk_prelabeled_route_count += 1 lp_soft = vft.is_local_preferenced(g, trace, first_edge=True, vfmode=vft.PRELABELED) lp_hard = vft.is_local_preferenced(g, trace, first_edge=False, vfmode=vft.PRELABELED) if lp_soft: random_nonvf_walk_lp_soft_prelabeled_route_count += 1 if lp_hard: random_nonvf_walk_lp_hard_prelabeled_route_count += 1 random_nonvf_walk_prelabeled_route_len.append(len(random_path)) # sanity check # if random_path[0] != s or random_path[-1] != t: # logger.error('ALERT') if len(random_path) != len(set(random_path)): logger.error('LENGTH ERROR') extra_meta = { helpers.RANDOM_NONVF_WALK_RUN_COUNT: try_per_race, helpers.RANDOM_NONVF_WALK_VF_CLOSENESS_ROUTE: random_nonvf_walk_closeness_route_count, helpers.RANDOM_NONVF_WALK_VF_CLOSENESS_ROUTE_LEN: random_nonvf_walk_closeness_route_len, helpers.RANDOM_NONVF_WALK_VF_DEGREE_ROUTE: random_nonvf_walk_degree_route_count, helpers.RANDOM_NONVF_WALK_VF_DEGREE_ROUTE_LEN: random_nonvf_walk_degree_route_len, helpers.RANDOM_NONVF_WALK_VF_PRELABELED_ROUTE: random_nonvf_walk_prelabeled_route_count, helpers.RANDOM_NONVF_WALK_VF_PRELABELED_ROUTE_LEN: random_nonvf_walk_prelabeled_route_len, helpers.RANDOM_NONVF_WALK_LP_SOFT_DEGREE_ROUTE: random_nonvf_walk_lp_soft_degree_route_count, helpers.RANDOM_NONVF_WALK_LP_SOFT_CLOSENESS_ROUTE: random_nonvf_walk_lp_soft_closeness_route_count, helpers.RANDOM_NONVF_WALK_LP_SOFT_PRELABELED_ROUTE: random_nonvf_walk_lp_soft_prelabeled_route_count, helpers.RANDOM_NONVF_WALK_LP_HARD_DEGREE_ROUTE: random_nonvf_walk_lp_hard_degree_route_count, helpers.RANDOM_NONVF_WALK_LP_HARD_CLOSENESS_ROUTE: random_nonvf_walk_lp_hard_closeness_route_count, helpers.RANDOM_NONVF_WALK_LP_HARD_PRELABELED_ROUTE: random_nonvf_walk_lp_hard_prelabeled_route_count } trace_meta.update(extra_meta) ## save modified meta # all meta_* get only references from meta_original helpers.save_to_json(out, meta_original) # calculate results real_vf = [x[helpers.IS_VF_CLOSENESS] for x in meta_random] real_vf_ratio = np.mean(real_vf) random_nonvf_walk_vf_ratio_per_element = [ x[helpers.RANDOM_NONVF_WALK_VF_CLOSENESS_ROUTE] / x[helpers.RANDOM_NONVF_WALK_RUN_COUNT] for x in meta_random ] random_nonvf_walk_vf_ratio = np.mean( random_nonvf_walk_vf_ratio_per_element) # print results logger.info('') logger.info('Empty: %d' % empty) logger.info('Tested trace count: %d' % len(meta_random)) logger.info('VF ratio in tested traces: %f' % real_vf_ratio) logger.info('VF ratio in random walks: %f' % random_nonvf_walk_vf_ratio)