def _init_data(self): self.train = _get_data(Config.train_save_file) self.valid = _get_data(Config.valid_save_file) self.test = _get_data(Config.test_save_file)
# init = tf.global_variables_initializer() # sess.run(init) graph = tf.get_default_graph() ph, train_phase = _init_placeholder(graph) print(ph) prediction = tf.get_collection('pred_network')[0] # loss = tf.get_collection('loss')[0] loss = graph.get_tensor_by_name('loss:0') total_emb, single_size, numerical_size, multi_size = _get_conf() field_size = single_size + numerical_size + multi_size embedding_length = field_size * Config.embedding_size test = _get_data(Config.test_save_file) test = test[:30000] test_batch = _get_batch(test, -1, single_size=single_size, numerical_size=numerical_size, multi_size=multi_size) test_label = get_label(test_batch[0], 2) test_dict = { ph['single_index']: test_batch[1], ph['numerical_index']: test_batch[2], ph['numerical_value']: test_batch[3], ph['value']: test_batch[-1], ph['label']: test_label, train_phase: False