示例#1
0
def main():
    s = {
        'nh1': 300,
        'nh2': 300,
        'win': 3,
        'emb_dimension': 300,
        'lr': 0.001,
        'lr_decay': 0.5,
        'max_grad_norm': 5,
        'seed': 345,
        'nepochs': 50,
        'batch_size': 16,
        'keep_prob': 1.0,
        'check_dir': './checkpoints/GZ_EMNLP2016/semeval_0.001_16',
        'display_test_per': 1,
        'lr_decay_per': 5
    }

    # load the dataset
    #data_set_file = 'data/ACL2017/inspec/inspec_t_a_GZ_data_set.pkl'
    #emb_file = 'data/ACL2017/inspec/inspec_t_a_GZ_embedding.pkl'
    # data_set_file = 'data/ACL2017/krapivin/krapivin_t_a_allwords_data_set.pkl'
    # emb_file = 'data/ACL2017/ACL2017_t_a_embedding.pkl'
    # data_set_file = 'data/ACL2017/krapivin/krapivin_t_a_GZ_data_set.pkl'
    # emb_file = 'data/ACL2017/krapivin/krapivin_t_a_GZ_embedding.pkl'
    #data_set_file = 'data/ACL2017/kp20k/kp20k_t_a_allwords_data_set.pkl'
    #emb_file = 'data/ACL2017/kp20k/ACL2017_t_a_embedding.pkl'
    data_set_file = 'data/ACL2017/semeval/semeval_t_a_GZ_data_set.pkl'
    emb_file = 'data/ACL2017/semeval/semeval_t_a_GZ_embedding.pkl'
    # train_set, test_set, dic, embedding = load.atisfold(data_set_file, emb_file)
    #data_set_file = 'data/ACL2017/nus/nus_t_a_GZ_data_set.pkl'
    #emb_file = 'data/ACL2017/nus/nus_t_a_GZ_embedding.pkl'
    # train_set, test_set, dic, embedding = load.atisfold(data_set_file, emb_file)
    print('loading dataset.....')
    train_set, valid_set, test_set, dic, embedding = load.atisfold_ACL2017(
        data_set_file, emb_file)
    # idx2label = dict((k,v) for v,k in dic['labels2idx'].items())
    # idx2word  = dict((k,v) for v,k in dic['words2idx'].items())

    # vocab = set(dic['words2idx'].keys())
    # vocsize = len(vocab)
    test_lex, test_y, test_z = test_set
    # test_lex = test_lex[:1000]
    # test_y = test_y[:1000]
    # test_z = test_z[:1000]

    y_nclasses = 2
    z_nclasses = 5

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    config = tf.ConfigProto(gpu_options=gpu_options,
                            log_device_placement=False,
                            allow_soft_placement=True)
    with tf.Session(config=config) as sess:

        rnn = model.Model(nh1=s['nh1'],
                          nh2=s['nh2'],
                          ny=y_nclasses,
                          nz=z_nclasses,
                          de=s['emb_dimension'],
                          cs=s['win'],
                          lr=s['lr'],
                          lr_decay=s['lr_decay'],
                          embedding=embedding,
                          max_gradient_norm=s['max_grad_norm'],
                          batch_size=s['batch_size'],
                          model_cell='lstm')

        checkpoint_dir = s['check_dir']
        logfile = open(str(s['check_dir']) + '/predict_log_NEW.txt',
                       'a',
                       encoding='utf-8')
        saver = tf.train.Saver(tf.all_variables())
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            print(ckpt.model_checkpoint_path)
            logfile.write(str(ckpt.model_checkpoint_path) + '\n')
            saver.restore(sess, ckpt.model_checkpoint_path)

        def dev_step(cwords):
            feed = {
                rnn.input_x: cwords,
                rnn.keep_prob: s['keep_prob'],
                # rnn.batch_size:s['batch_size']
            }
            fetches = rnn.sz_pred
            sz_pred = sess.run(fetches=fetches, feed_dict=feed)
            return sz_pred

        predictions_test = []
        groundtruth_test = []
        start_num = 0
        steps = len(test_lex) // s['batch_size']
        # for batch in tl.iterate.minibatches(test_lex, test_z, batch_size=s['batch_size']):
        print('testing............')
        for step in range(steps):
            # batch = batch_putin(test_lex, test_z, start_num=start_num, batch_size=s['batch_size'])
            # x, z = batch
            x, z = test_batch_putin(test_lex,
                                    test_z,
                                    start_num=start_num,
                                    batch_size=s['batch_size'])
            x = load.pad_sentences(x)
            x = tools.contextwin_2(x, s['win'])
            predictions_test.extend(dev_step(x))
            groundtruth_test.extend(z)
            start_num += s['batch_size']
            if step % 100 == 0:
                print('tested %d batch......' % step)

        print('dataset: ' + data_set_file)
        logfile.write('dataset: ' + data_set_file + '\n')
        print("result:")
        logfile.write("result:\n")
        # res_test = tools.conlleval(predictions_test, groundtruth_test)
        res_test = tools.conlleval(predictions_test, groundtruth_test)
        print('all: ', res_test)
        logfile.write('all: ' + str(res_test) + '\n')
        res_test_top5 = tools.conlleval_top(predictions_test, groundtruth_test,
                                            5)
        print('top5: ', res_test_top5)
        logfile.write('top5: ' + str(res_test_top5) + '\n')
        res_test_top10 = tools.conlleval_top(predictions_test,
                                             groundtruth_test, 10)
        print('top10: ', res_test_top10)
        logfile.write('top10: ' + str(res_test_top10) + '\n')
        logfile.write(
            '-----------------------------------------------------------------------------------------------------------------------'
            + '\n')
    logfile.close()
示例#2
0
def main():
    s = {
        'nh1': 300,
        'nh2': 300,
        'win': 3,
        'emb_dimension': 300,
        'lr': 0.1,
        'lr_decay': 0.5,
        'max_grad_norm': 5,
        'seed': 345,
        'nepochs': 150,
        'batch_size': 16,
        'keep_prob': 0.5,
        'check_dir': './checkpoints',
        'display_test_per': 3,
        'lr_decay_per': 10
    }

    train_set, test_set, dic, embedding = load.atisfold()

    idx2label = dict((k, v) for v, k in dic['labels2idx'].items())
    idx2word = dict((k, v) for v, k in dic['words2idx'].items())

    train_lex, train_y, train_z = train_set

    tr = int(len(train_lex) * 0.9)
    valid_lex, valid_y, valid_z = train_lex[tr:], train_y[tr:], train_z[tr:]
    train_lex, train_y, train_z = train_lex[:tr], train_y[:tr], train_z[:tr]
    test_lex, test_y, test_z = test_set

    print('len(train_data) {}'.format(len(train_lex)))
    print('len(valid_data) {}'.format(len(valid_lex)))
    print('len(test_data) {}'.format(len(test_lex)))

    vocab = set(dic['words2idx'].keys())
    vocsize = len(vocab)
    print('len(vocab) {}'.format(vocsize))
    print("Train started!")

    y_nclasses = 2
    z_nclasses = 5

    nsentences = len(train_lex)

    # tf.reset_default_graph()
    print('#' * 30)
    with tf.Session() as sess:

        rnn = model.Model(nh1=s['nh1'],
                          nh2=s['nh2'],
                          ny=y_nclasses,
                          nz=z_nclasses,
                          de=s['emb_dimension'],
                          cs=s['win'],
                          lr=s['lr'],
                          lr_decay=s['lr_decay'],
                          embedding=embedding,
                          max_gradient_norm=s['max_grad_norm'],
                          model_cell='lstm')

        checkpoint_dir = s['check_dir']
        if not os.path.exists(checkpoint_dir):
            os.mkdir(checkpoint_dir)
        checkpoint_prefix = os.path.join(checkpoint_dir, 'model')
        print("*" * 30)

        def train_step(cwords, label_y, label_z):
            feed = {
                rnn.input_x: cwords,
                rnn.input_y: label_y,
                rnn.input_z: label_z,
                rnn.keep_prob: s['keep_prob'],
                rnn.batch_size: s['batch_size']
            }
            fetches = [rnn.loss, rnn.train_op]
            loss, _ = sess.run(fetches=fetches, feed_dict=feed)
            return loss

        def dev_step(cwords):
            feed = {
                rnn.input_x: cwords,
                rnn.keep_prob: 1.0,
                rnn.batch_size: s['batch_size']
            }
            fetches = rnn.sz_pred
            sz_pred = sess.run(fetches=fetches, feed_dict=feed)
            return sz_pred

        saver = tf.train.Saver(tf.all_variables())
        sess.run(tf.initialize_all_variables())

        best_f = -1
        best_e = 0
        test_best_f = -1
        test_best_e = 0
        best_res = None
        test_best_res = None
        for e in range(s['nepochs']):
            tools.shuffle([train_lex, train_y, train_z], s['seed'])
            t_start = time.time()
            for step, batch in enumerate(
                    tl.iterate.minibatches(train_lex,
                                           list(zip(train_y, train_z)),
                                           batch_size=s['batch_size'])):
                input_x, target = batch
                label_y, label_z = zip(*target)
                input_x = load.pad_sentences(input_x)
                label_y = load.pad_sentences(label_y)
                label_z = load.pad_sentences(label_z)
                # print(type(input_x))
                # print(type(s['win']))
                # print(input_x)
                # print(s['win'])
                cwords = tools.contextwin_2((input_x), s['win'])
                #print(s['batch_size'])
                loss = train_step(cwords, label_y, label_z)

                print(
                    'loss %.2f' % loss,
                    ' [learning] epoch %i>> %2.2f%%' %
                    (e, s['batch_size'] * step * 100. / nsentences),
                    'completed in %.2f (sec) <<\r' % (time.time() - t_start),
                )

                sys.stdout.flush()

            #VALID

            predictions_valid = []
            predictions_test = []
            groundtruth_valid = []
            groundtruth_test = []
            for batch in tl.iterate.minibatches(valid_lex,
                                                valid_z,
                                                batch_size=s['batch_size']):
                x, z = batch
                x = load.pad_sentences(x)
                x = tools.contextwin_2(x, s['win'])
                predictions_valid.extend(dev_step(x))
                groundtruth_valid.extend(z)

            res_valid = tools.conlleval(predictions_valid, groundtruth_valid,
                                        '')

            if res_valid['f'] > best_f:
                best_f = res_valid['f']
                best_e = e
                best_res = res_valid
                print('\nVALID new best:', res_valid)
                path = saver.save(sess=sess,
                                  save_path=checkpoint_prefix,
                                  global_step=e)
                print("Save model checkpoint to {}".format(path))
            else:
                print('\nVALID new curr:', res_valid)

            #TEST
            if e % s['display_test_per'] == 0:
                for batch in tl.iterate.minibatches(
                        test_lex, test_z, batch_size=s['batch_size']):
                    x, z = batch
                    x = load.pad_sentences(x)
                    x = tools.contextwin_2(x, s['win'])
                    predictions_test.extend(dev_step(x))
                    groundtruth_test.extend(z)

                res_test = tools.conlleval(predictions_test, groundtruth_test,
                                           '')

                if res_test['f'] > test_best_f:
                    test_best_f = res_test['f']
                    test_best_e = e
                    test_best_res = res_test
                    print('TEST new best:', res_test)
                else:
                    print('TEST new curr:', res_test)

            # learning rate decay if no improvement in 10 epochs
            if e - best_e > s['lr_decay_per']:
                sess.run(fetches=rnn.learning_rate_decay_op)
            lr = sess.run(fetches=rnn.lr)
            print('learning rate:%f' % lr)
            if lr < 1e-5: break
            print()

        print("Train finished!")
        print('Valid Best Result: epoch %d:  ' % (best_e), best_res)
        print('Test Best Result: epoch %d:  ' % (test_best_e), test_best_res)
示例#3
0
def main():
    s = {
        'nh1': 300,
        'nh2': 300,
        'win': 3,
        'emb_dimension': 300,
        'lr': 0.01,
        'lr_decay': 0.5,  #
        'max_grad_norm': 5,  #
        'seed': 345,  #
        'nepochs': 50,
        'batch_size': 16,
        'keep_prob': 0.5,
        'check_dir': './checkpoints/GZ_EMNLP2016/kp20k_0.01_16',
        'display_test_per': 1,  #
        'lr_decay_per': 5  #
    }

    # data_set_file = 'data/ACL2017/inspec/inspec_t_a_GZ_data_set.pkl'
    # emb_file = 'data/ACL2017/inspec/inspec_t_a_GZ_embedding.pkl'
    # data_set_file = 'data/ACL2017/semeval/semeval_t_a_GZ_data_set.pkl'
    #emb_file = 'data/ACL2017/semeval/semeval_t_a_GZ_embedding.pkl'
    data_set_file = 'data/ACL2017/kp20k/kp20k_t_a_allwords_data_set.pkl'
    emb_file = 'data/ACL2017/kp20k/ACL2017_t_a_embedding.pkl'
    #data_set_file = 'data/ACL2017/inspec/inspec_t_a_GZ_data_set.pkl'
    #emb_file = 'data/ACL2017/inspec/inspec_t_a_GZ_embedding.pkl'
    # data_set_file = 'data/ACL2017/semeval/semeval_t_a_GZ_data_set.pkl'
    # emb_file = 'data/ACL2017/semeval/semeval_t_a_GZ_embedding.pkl'
    #data_set_file = 'data/ACL2017/nus/nus_t_a_GZ_data_set.pkl'
    #emb_file = 'data/ACL2017/nus/nus_t_a_GZ_embedding.pkl'
    #data_set_file = 'data/ACL2017/krapivin/krapivin_t_a_GZ_data_set.pkl'
    #emb_file = 'data/ACL2017/krapivin/krapivin_t_a_GZ_embedding.pkl'
    print('loading dataset.....')
    # train_set,test_set,dic,embedding = load.atisfold(data_set_file, emb_file)
    train_set, valid_set, test_set, dic, embedding = load.atisfold_ACL2017(
        data_set_file, emb_file)
    # idx2label = dict((k,v) for v,k in dic['labels2idx'].iteritems())
    # idx2word  = dict((k,v) for v,k in dic['words2idx'].iteritems())

    train_lex, train_y, train_z = train_set
    # train_lex: [[每条tweet的word的idx],[每条tweet的word的idx]], train_y: [[关键词的位置为1]], train_z: [[关键词的位置为0~4(开头、结尾...)]]
    # tr = int(len(train_lex)*0.9)
    # valid_lex, valid_y, valid_z = train_lex[tr:], train_y[tr:], train_z[tr:]
    # train_lex, train_y, train_z = train_lex[:tr], train_y[:tr], train_z[:tr]
    # test_lex,  test_y, test_z  = test_set
    valid_lex, valid_y, valid_z = valid_set
    test_lex, test_y, test_z = test_set
    log_dir = s['check_dir']
    if not os.path.exists(log_dir):
        os.mkdir(log_dir)
    logfile = open(str(s['check_dir']) + '/log.txt',
                   'a',
                   encoding='utf-8',
                   buffering=1)
    print('len(train_data) {}'.format(len(train_lex)))
    print('len(valid_data) {}'.format(len(valid_lex)))
    print('len(test_data) {}'.format(len(test_lex)))
    logfile.write('len(train_data) {}\n'.format(len(train_lex)))
    logfile.write('len(valid_data) {}\n'.format(len(valid_lex)))
    logfile.write('len(test_data) {}\n'.format(len(test_lex)))
    vocab = set(dic['words2idx'].keys())
    vocsize = len(vocab)
    print('len(vocab) {}'.format(vocsize))
    print("Train started!")
    logfile.write('len(vocab) {}\n'.format(vocsize))
    logfile.write("Train started!\n")
    y_nclasses = 2
    z_nclasses = 5

    nsentences = len(train_lex)
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
    config = tf.ConfigProto(
        gpu_options=gpu_options,
        log_device_placement=False,
        allow_soft_placement=True)  ###########################################
    with tf.compat.v1.Session(
            config=config) as sess:  #####################################
        rnn = model.Model(nh1=s['nh1'],
                          nh2=s['nh2'],
                          ny=y_nclasses,
                          nz=z_nclasses,
                          de=s['emb_dimension'],
                          cs=s['win'],
                          lr=s['lr'],
                          lr_decay=s['lr_decay'],
                          embedding=embedding,
                          max_gradient_norm=s['max_grad_norm'],
                          batch_size=s['batch_size'],
                          model_cell='lstm')
        #     my_model = mymodel.myModel(
        #         # nh1=s['nh1'],
        #         # nh2=s['nh2'],
        #         # ny=y_nclasses,
        #         # nz=z_nclasses,
        #         de=s['emb_dimension'],
        #         lr=s['lr'],
        #         lr_decay=s['lr_decay'],
        #         embedding=embedding,
        #         max_gradient_norm=s['max_grad_norm'],
        #         keep_prob=s['keep_prob'],
        #         model_cell='lstm'
        #     )

        # 保存模型
        checkpoint_dir = s['check_dir']
        if not os.path.exists(checkpoint_dir):
            os.mkdir(checkpoint_dir)
        checkpoint_prefix = os.path.join(checkpoint_dir, 'model')

        def train_step(cwords, label_y, label_z):
            feed = {
                rnn.input_x: cwords,
                rnn.input_y: label_y,
                rnn.input_z: label_z,
                rnn.keep_prob: s['keep_prob']
                # rnn.batch_size:s['batch_size']
            }
            fetches = [rnn.loss, rnn.train_op]
            loss, _ = sess.run(fetches=fetches, feed_dict=feed)
            # _,Loss = sess.run(fetches=fetches, feed_dict=feed)
            return loss

        def dev_step(cwords):
            feed = {
                rnn.input_x: cwords,
                rnn.keep_prob: 1.0
                # rnn.keep_prob:1.0,
                # rnn.batch_size:s['batch_size']
            }
            fetches = rnn.sz_pred
            sz_pred = sess.run(fetches=fetches, feed_dict=feed)
            return sz_pred

        saver = tf.train.Saver(tf.all_variables(), max_to_keep=2)
        sess.run(tf.global_variables_initializer())

        best_f = -1
        best_e = 0
        test_best_f = -1
        test_best_e = 0
        best_res = None
        test_best_res = None
        for e in range(s['nepochs']):
            tools.shuffle([train_lex, train_y, train_z], s['seed'])
            t_start = time.time()
            start_num = 0
            # for step,batch in enumerate(tl.iterate.minibatches(train_lex,list(zip(train_y,train_z)),batch_size=s['batch_size'])):
            # for step, batch in enumerate(batch_putin(train_lex, list(zip(train_y, train_z)), start_num=start_num, batch_size=s['batch_size'])):
            steps = len(train_lex) // s['batch_size']
            for step in range(steps):
                # batch = batch_putin(train_lex,list(zip(train_y, train_z)), start_num=start_num, batch_size=s['batch_size'])
                # input_x,target=batch
                # label_y,label_z=list(zip(*target))
                input_x, label_y, label_z = train_batch_putin(
                    train_lex,
                    train_y,
                    train_z,
                    start_num=start_num,
                    batch_size=s['batch_size'])
                input_x = load.pad_sentences(input_x)
                label_y = load.pad_sentences(label_y)
                label_z = load.pad_sentences(label_z)
                cwords = tools.contextwin_2(input_x, s['win'])
                # cwords = input_x
                loss = train_step(cwords, label_y, label_z)
                start_num += s['batch_size']
                print(
                    'loss %.6f' % loss, ' [learning] epoch %i>> %2.2f%%' %
                    (e, s['batch_size'] * step * 100. / nsentences),
                    'completed in %.2f (sec) <<\r' % (time.time() - t_start))
                if step % 1000 == 0:
                    logfile.write('loss %.6f' % loss)
                    logfile.write(
                        ' [learning] epoch %i>> %2.2f%%' %
                        (e, s['batch_size'] * step * 100. / nsentences))
                    logfile.write('completed in %.2f (sec) <<\n' %
                                  (time.time() - t_start))
                # sys.stdout.flush())

            #VALID
            if e >= 0:
                print('Validing..............')
                predictions_valid = []
                predictions_test = []
                groundtruth_valid = []
                groundtruth_test = []
                start_num = 0
                steps = len(valid_lex) // s['batch_size']
                # for batch in  tl.iterate.minibatches(valid_lex,valid_z,batch_size=s['batch_size']):
                for step in range(steps):
                    # batch = batch_putin(valid_lex, valid_z, start_num=start_num, batch_size=s['batch_size'])
                    # x,z=batch
                    x, z = test_batch_putin(valid_lex,
                                            valid_z,
                                            start_num=start_num,
                                            batch_size=s['batch_size'])
                    x = load.pad_sentences(x)
                    x = tools.contextwin_2(x, s['win'])
                    predictions_valid.extend(dev_step(x))
                    groundtruth_valid.extend(z)
                    start_num += s['batch_size']

                res_valid = tools.conlleval(predictions_valid,
                                            groundtruth_valid)
                del predictions_valid
                del groundtruth_valid
                if res_valid['f'] > best_f:
                    best_f = res_valid['f']
                    best_e = e
                    best_res = res_valid
                    print('\nVALID new best:', res_valid)
                    logfile.write('\nVALID new best: ' + str(res_valid))
                    path = saver.save(sess=sess,
                                      save_path=checkpoint_prefix,
                                      global_step=e)
                    print("Save model checkpoint to {}".format(path))
                    logfile.write(
                        "\nSave model checkpoint to {}\n".format(path))
                else:
                    print('\nVALID new curr:', res_valid)
                    logfile.write('\nVALID new curr: ' + str(res_valid))

                #TEST
                print('Testing..............')
                start_num = 0
                steps = len(test_lex) // s['batch_size']
                if e % s['display_test_per'] == 0:
                    # for batch in tl.iterate.minibatches(test_lex, test_z, batch_size=s['batch_size']):
                    for step in range(steps):
                        # batch = batch_putin(test_lex, test_z, start_num=start_num, batch_size=s['batch_size'])
                        # x,z = batch
                        x, z = test_batch_putin(test_lex,
                                                test_z,
                                                start_num=start_num,
                                                batch_size=s['batch_size'])
                        x = load.pad_sentences(x)
                        x = tools.contextwin_2(x, s['win'])
                        predictions_test.extend(dev_step(x))
                        groundtruth_test.extend(z)
                        start_num += s['batch_size']

                    res_test = tools.conlleval(predictions_test,
                                               groundtruth_test)

                    if res_test['f'] > test_best_f:
                        test_best_f = res_test['f']
                        test_best_e = e
                        test_best_res = res_test
                        print('TEST new best:', res_test)
                        logfile.write('\nTEST new best: ' + str(res_test))
                    else:
                        print('TEST new curr:', res_test)
                        logfile.write('\nTEST new curr: ' + str(res_test))

                # learning rate decay if no improvement in 10 epochs
                if e - best_e > s['lr_decay_per']:
                    sess.run(fetches=rnn.learning_rate_decay_op)
                lr = sess.run(fetches=rnn.lr)
                print('learning rate:%f' % lr)
                logfile.write('\nlearning rate:%f\n' % lr)
                if lr < 1e-6: break

        print("Train finished!")
        print('Valid Best Result: epoch %d:  ' % (best_e), best_res)
        print('Test Best Result: epoch %d:  ' % (test_best_e), test_best_res)
        logfile.write("Train finished!\n")
        logfile.write('Valid Best Result: epoch %d:   ' % (best_e) +
                      str(best_res))
        logfile.write('\nTest Best Result: epoch %d:   ' % (test_best_e) +
                      str(test_best_res))
        logfile.close()
示例#4
0
def main():
    s = {
        'nh1': 300,
        'nh2': 300,
        'win': 3,
        'emb_dimension': 300,
        'lr': 0.1,
        'lr_decay': 0.5,
        'max_grad_norm': 5,
        'seed': 345,
        'nepochs': 50,
        'batch_size': 16,
        'keep_prob': 1.0,
        'check_dir': './checkpoints',
        'display_test_per': 5,
        'lr_decay_per': 10
    }

    # load the dataset
    train_set, test_set, dic, embedding = load.atisfold()
    idx2label = dict((k, v) for v, k in dic['labels2idx'].iteritems())
    idx2word = dict((k, v) for v, k in dic['words2idx'].iteritems())

    vocab = set(dic['words2idx'].keys())
    vocsize = len(vocab)

    test_lex, test_y, test_z = test_set[0:1000]

    y_nclasses = 2
    z_nclasses = 5

    with tf.Session() as sess:

        rnn = model.Model(nh1=s['nh1'],
                          nh2=s['nh2'],
                          ny=y_nclasses,
                          nz=z_nclasses,
                          de=s['emb_dimension'],
                          cs=s['win'],
                          lr=s['lr'],
                          lr_decay=s['lr_decay'],
                          embedding=embedding,
                          max_gradient_norm=s['max_grad_norm'],
                          model_cell='lstm')

        checkpoint_dir = s['check_dir']
        saver = tf.train.Saver(tf.all_variables())
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)

        def dev_step(cwords):
            feed = {
                rnn.input_x: cwords,
                rnn.keep_prob: 1.0,
                rnn.batch_size: s['batch_size']
            }
            fetches = rnn.sz_pred
            sz_pred = sess.run(fetches=fetches, feed_dict=feed)
            return sz_pred

        print("测试结果�")
        predictions_test = []
        groundtruth_test = []
        for batch in tl.iterate.minibatches(test_lex,
                                            test_z,
                                            batch_size=s['batch_size']):
            x, z = batch
            x = load.pad_sentences(x)
            x = tools.contextwin_2(x, s['win'])
            predictions_test.extend(dev_step(x))
            groundtruth_test.extend(z)

        res_test = tools.conlleval(predictions_test, groundtruth_test, '')

        print res_test
示例#5
0
def main():
    s = {
        'nh1': 300,
        'nh2': 300,
        'win': 3,
        'emb_dimension': 300,
        'lr': 0.001,
        'lr_decay': 0.5,  #
        'max_grad_norm': 5,  #
        'seed': 345,  #
        'nepochs': 50,
        'batch_size': 16,
        'keep_prob': 1.0,
        'check_dir': './checkpoints/GZ_EMNLP2016_0.001_16/semeval',
        'display_test_per': 1,  #
        'lr_decay_per': 5  #
    }

    # load the dataset
    # data_set_file = 'CNTN/data/inspec_wo_stem/data_set.pkl'
    # emb_file = 'CNTN/data/inspec_wo_stem/embedding.pkl'
    # data_set_file = 'data/ACL2017/krapivin/krapivin_t_a_GZ_data_set.pkl'
    # emb_file = 'data/ACL2017/krapivin/krapivin_t_a_GZ_embedding.pkl'
    data_set_file = 'data/ACL2017/semeval/semeval_t_a_data_set.pkl'
    emb_file = 'data/ACL2017/semeval/semeval_t_a_embedding.pkl'
    # train_set, test_set, dic, embedding = load.atisfold(data_set_file, emb_file)
    print('loading dataset.....')
    train_set, valid_set, test_set, dic, embedding = load.atisfold_ACL2017(data_set_file, emb_file)
    test_lex, test_y, test_z = test_set

    y_nclasses = 2
    z_nclasses = 5

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
    config = tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False, allow_soft_placement=True)  ###########################################
    with tf.Session(config=config) as sess:
        my_model = mymodel.myModel(
            nh1=s['nh1'],
            nh2=s['nh2'],
            ny=y_nclasses,
            nz=z_nclasses,
            de=s['emb_dimension'],
            lr=s['lr'],
            lr_decay=s['lr_decay'],
            embedding=embedding,
            max_gradient_norm=s['max_grad_norm'],
            batch_size=s['batch_size'],
            rnn_model_cell='lstm'
        )

        checkpoint_dir = s['check_dir']
        logfile = open(str(s['check_dir']) + '/predict_log_NEW.txt', 'a', encoding='utf-8')
        saver = tf.train.Saver(tf.all_variables())
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            # print(ckpt.all_model_checkpoint_paths[4])
            print(ckpt.model_checkpoint_path)
            logfile.write(str(ckpt.model_checkpoint_path) + '\n')
            saver.restore(sess, ckpt.model_checkpoint_path)

        def dev_step(cwords):
            feed = {
                my_model.cnn_input_x: cwords,
                my_model.keep_prob: s['keep_prob']
            }
            fetches = my_model.sz_pred
            sz_pred = sess.run(fetches=fetches, feed_dict=feed)
            return sz_pred


        predictions_test = []
        groundtruth_test = []
        start_num = 0
        steps = len(test_lex) // s['batch_size']
        # for batch in tl.iterate.minibatches(test_lex, test_z, batch_size=s['batch_size']):
        print('testing............')
        for step in range(steps):
            x, z = test_batch_putin(test_lex, test_z, start_num=start_num, batch_size=s['batch_size'])
            x = load.pad_sentences(x)
            x = tools.contextwin_2(x, s['win'])
            predictions_test.extend(dev_step(x))
            groundtruth_test.extend(z)
            start_num += s['batch_size']
            if step % 100 == 0:
                print('tested %d batch......' % (step//100))

        print('dataset: ' + data_set_file)
        logfile.write('dataset: ' + data_set_file + '\n')
        print("测试结果:")
        logfile.write("测试结果:\n")
        res_test = tools.conlleval(predictions_test, groundtruth_test)
        print('all: ', res_test)
        logfile.write('all: ' + str(res_test) + '\n')
        res_test_top5 = tools.conlleval_top(predictions_test, groundtruth_test, 5)
        print('top5: ', res_test_top5)
        logfile.write('top5: ' + str(res_test_top5) + '\n')
        res_test_top10 = tools.conlleval_top(predictions_test, groundtruth_test, 10)
        print('top10: ', res_test_top10)
        logfile.write('top10: ' + str(res_test_top10) + '\n')
        logfile.write('-----------------------------------------------------------------------------------------------------------------------' + '\n')
    logfile.close()
示例#6
0
def main():
    s = {
        'nh1':300,
        'nh2':300,
        'win':3,
        'emb_dimension':300,
        'lr':0.01,
        'lr_decay':0.5,
        'max_grad_norm':5,
        'seed':345,
        'nepochs':50,
        'batch_size':16,
        'keep_prob':1.0,
        'check_dir':'./checkpoints/GZ_EMNLP2016/semeval_0.001_16OLD',
        'display_test_per':1,
        'lr_decay_per':5
    }

    # load the dataset
    # data_set_file = 'CNTN/data/inspec_wo_stem/data_set.pkl'
    # emb_file = 'CNTN/data/inspec_wo_stem/embedding.pkl'
    data_set_file = 'data/ACL2017/semeval/semeval_t_a_GZ_data_set.pkl'
    emb_file = 'data/ACL2017/semeval/semeval_t_a_GZ_embedding.pkl'
    testPath = 'data/ACL2017/semeval/semeval_test.json'
    #data_set_file = 'data/ACL2017/kp20k/kp20k_t_a_allwords_data_set.pkl'
    #emb_file = 'data/ACL2017/kp20k/ACL2017_t_a_embedding.pkl'
    logFile = open('data/logEMNLP2016.txt', 'w', encoding='utf-8')
    # train_set, test_set, dic, embedding = load.atisfold(data_set_file, emb_file)
    testJsonFile = open(testPath, 'r', encoding='utf-8')
    testLines = testJsonFile.readlines()
    testJsonFile.close()
    print('loading dataset.....')
    train_set, valid_set, test_set, dic, embedding = load.atisfold_ACL2017(data_set_file, emb_file)
    test_lex, test_y, test_z = test_set

    y_nclasses = 2
    z_nclasses = 5

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
    config = tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False, allow_soft_placement=True)  ###########################################
    with tf.Session(config=config) as sess:
        rnn = model.Model(
            nh1=s['nh1'],
            nh2=s['nh2'],
            ny=y_nclasses,
            nz=z_nclasses,
            de=s['emb_dimension'],
            cs=s['win'],
            lr=s['lr'],
            lr_decay=s['lr_decay'],
            embedding=embedding,
            max_gradient_norm=s['max_grad_norm'],
            batch_size=s['batch_size'],
            model_cell='lstm'
        )

        checkpoint_dir = s['check_dir']
        saver = tf.train.Saver(tf.all_variables())
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            # print(ckpt.all_model_checkpoint_paths[4])
            print(ckpt.model_checkpoint_path)
            logFile.write(ckpt.model_checkpoint_path + '\n')
            saver.restore(sess, ckpt.model_checkpoint_path)

        def dev_step(cwords):
            feed={
                rnn.input_x:cwords,
                rnn.keep_prob: s['keep_prob'],
                # rnn.batch_size:s['batch_size']
            }
            fetches=rnn.sz_pred
            sz_pred=sess.run(fetches=fetches,feed_dict=feed)
            return sz_pred


        predictions_test = []
        groundtruth_test = []
        start_num = 0
        indexInBatch = 0
        steps = len(test_lex) // s['batch_size']
        # for batch in tl.iterate.minibatches(test_lex, test_z, batch_size=s['batch_size']):
        print('testing............')
        logFile.write('testing............\n')
        for step in range(6):
            x, z = test_batch_putin(test_lex, test_z, start_num=start_num, batch_size=s['batch_size'])
            x = load.pad_sentences(x)
            x = tools.contextwin_2(x, s['win'])
            predictions_test.extend(dev_step(x))
            groundtruth_test.extend(z)
            start_num += s['batch_size']
            if step % 100 == 0:
                print('tested %d batch......' % (step//100))
                logFile.write('tested %d batch......\n' % (step//100))
            while indexInBatch < len(predictions_test):
                curGoodNum = 0
                curPreKp = []
                curJsonData = json.loads(testLines[indexInBatch])
                #curLineList = (curJsonData["title"].strip().lower() + ' ' + curJsonData["abstract"].strip().lower()).split(' |,|.|:')
                #curLineList = re.split('[ ,.:]', )
                curLineList = nltk.word_tokenize((curJsonData["title"].strip().lower() + ' ' + curJsonData["abstract"].strip().lower()))
                #curLineList = curJsonData["abstract"].split(' ')
                print('indexOfLine is :', indexInBatch)
                print('len of curLineList is %d' % len(curLineList))
                print('len of predictions_test[%d] is %d' % (indexInBatch, len(predictions_test[indexInBatch])))
                print('len of groundtruth_test[%d] is %d' % (indexInBatch, len(groundtruth_test[indexInBatch])))
                lenOfLine = min(len(predictions_test[indexInBatch]), len(groundtruth_test[indexInBatch]), len(curLineList))
                print(predictions_test[indexInBatch])
                print(groundtruth_test[indexInBatch])

                logFile.write('indexOfLine is : %s \n' % indexInBatch)
                logFile.write('len of curLineList is %d \n' % len(curLineList))
                logFile.write('len of predictions_test[%d] is %d \n' % (indexInBatch, len(predictions_test[indexInBatch])))
                logFile.write('len of groundtruth_test[%d] is %d \n' % (indexInBatch, len(groundtruth_test[indexInBatch])))
                logFile.write(str(predictions_test[indexInBatch]) + '\n')
                logFile.write(str(groundtruth_test[indexInBatch]) + '\n')
                tmpStack = []
                for j in range(lenOfLine):
                    if predictions_test[indexInBatch][j] == 4:
                        curPreKp.append(curLineList[j])
                        tmpStack = []
                    elif predictions_test[indexInBatch][j] == 1 and len(tmpStack) == 0:
                        tmpStack.append(curLineList[j])
                    elif predictions_test[indexInBatch][j] == 2 and len(tmpStack) != 0:
                        tmpStack.append(curLineList[j])
                    elif predictions_test[indexInBatch][j] == 3 and len(tmpStack) != 0:
                            tmpStack.append(curLineList[j])
                            curPreKp.append(' '.join(tmpStack))
                            tmpStack = []
                    else:
                        tmpStack = []
                    if predictions_test[indexInBatch][j] != 0 and predictions_test[indexInBatch][j] == groundtruth_test[indexInBatch][j]:
                        curGoodNum += 1
                print('curGoodNum is ', curGoodNum)
                print('predict keyphrase is :', curPreKp)
                print('ground truth is :', curJsonData['keywords'].split(';'))
                print('=======================================================================================================================================')
                logFile.write('curGoodNum is %d \n' % curGoodNum)
                logFile.write('predict keyphrase is ' + str(curPreKp) + '\n')
                logFile.write('ground truth is :' + str(curJsonData['keywords'].split(';')) + '\n')
                logFile.write('=======================================================================================================================================\n')
                indexInBatch += 1
    logFile.close()
    '''