# Parameters configuration
    config = configparser.ConfigParser()
    config.read('config_file/' + config_file)

    path_data = config[config_type]["path_data"]
    path_model = config[config_type]["path_model"]
    name_model = config[config_type]["name_model"]
    tracks = config[config_type]["tracks"].split(' ')
    list_features_final = config[config_type]["list_features"].split(' ')
    flag_save = int(config[config_type]["flag_save"])
    ratio_split = list(
        map(int, config[config_type]["ratio_split_sets"].split(' ')))
    nbr_cross_val = int(config[config_type]["nbr_cross_validation"])

    print('Loading data...')
    data_win, real_labels, list_states, list_features = tools.load_data_from_dump(
        path_data)

    num_track = 0
    name_track = tracks[num_track]
    num_track = taxonomy.index(name_track)

    # Loop on all the tracks from the taxonomy
    # for num_track, name_track in enumerate(tracks):
    # 	print(name_track)

    F1_score = []

    for n_iter in range(nbr_cross_val):
        data_train, labels_train, data_test, labels_test, id_train, id_test = tools.split_data_base(
            data_win, real_labels[num_track], ratio_split)
    nbr_component = 15

    print('Loading data...')

    data_win2 = []
    real_labels = [[], [], [], []]
    list_states = [[], [], [], []]

    tracks = [
        'general_posture', 'detailed_posture', 'details', 'current_action'
    ]

    path_annotation = '/home/amalaise/Documents/These/experiments/ANDY_DATASET/AndyData-lab-onePerson/annotations/labels_csv2/'

    data_win2, real_labels, list_states, list_features = tools.load_data_from_dump(
        'score/')
    if (local_features):
        list_reduce_features = tools.list_features_local(list_features)
        for data in data_win2:
            df_data = pd.DataFrame(data, columns=list_features)
            data = df_data[list_reduce_features].values

    # for participant, nbr in zip(list_participant, range(len(list_participant))):
    # 	path_data = path_data_root  + participant
    # 	print('Loading: ' + participant)

    # 	list_files = os.listdir(path_data)[0:3]
    # 	list_files.sort()

    # 	for file in list_files:
    # 		name_seq = os.path.splitext(file)[0]