def predict_spec(model, path): temp_spec = os.path.join(result_dir, "temp.png") tools.make_spec(path, temp_spec) x_batch = np.ndarray((1, 3, model.insize, model.insize), dtype=np.float32) y_batch = np.zeros((1, ), dtype=np.int32) x_batch[0] = read_image(temp_spec) return get_result(x_batch, y_batch, model)[0]
def predict_spec(model,path): temp_spec = os.path.join(result_dir,"temp.png") tools.make_spec(path,temp_spec) x_batch = np.ndarray((1,3,model.insize,model.insize), dtype=np.float32) y_batch = np.zeros((1,), dtype=np.int32) x_batch[0] = read_image(temp_spec) return get_result(x_batch,y_batch,model)[0]
def make_train(): #posi_tempo=[] print "start positive music feature extract" posi_mel=[] posi_chroma=[] posi_mfcc=[] hi_res=0 #posi_tempo=[] #nega_tempo=[] with warnings.catch_warnings(): warnings.simplefilter("ignore") for i in tqdm(positive_sample): #tools.make_vec(os.path.join(posi_dir,i),0,(posi_mel,posi_mfcc,posi_chroma)) try: mel,mfcc,chroma = tools.get_feature(os.path.join(posi_dir,i)) mel=[(0,j) for j in mel] mfcc=[(0,j) for j in mfcc] chroma=[(0,j) for j in chroma] posi_mel+=mel posi_mfcc+=mfcc posi_chroma+=chroma tools.make_spec(os.path.join(posi_dir,i),os.path.join(data_dir,"posi_spectro",i[:-3]+"png")) except audioop.error: hi_res+=1 p_dump(posi_mel,"posi_mel") p_dump(posi_mfcc,"posi_mfcc") p_dump(posi_chroma,"posi_chroma") del posi_mel del posi_mfcc del posi_chroma print "start negative music feature extract" nega_mel=[] nega_chroma=[] nega_mfcc=[] for i in tqdm(negative_sample): #tools.make_vec(os.path.join(nega_dir,i),0,(nega_mel,nega_mfcc,nega_chroma)) try: mel,mfcc,chroma=tools.get_feature(os.path.join(nega_dir,i)) mel=[(1,j) for j in mel] mfcc=[(1,j) for j in mfcc] chroma=[(1,j) for j in chroma] nega_mel+=mel nega_mfcc+=mfcc nega_chroma+=chroma tools.make_spec(os.path.join(nega_dir,i),os.path.join(data_dir,"nega_spectro",i[:-3]+"png")) except audioop.error: hi_res+=1 p_dump(nega_mel,"nega_mel") p_dump(nega_mfcc,"nega_mfcc") p_dump(nega_chroma,"nega_chroma") if hi_res: print "{} files are not used.it may be 24bit.".format(hi_res)
def make_train(): #posi_tempo=[] print "start positive music feature extract" posi_mel = [] posi_chroma = [] posi_mfcc = [] hi_res = 0 #posi_tempo=[] #nega_tempo=[] with warnings.catch_warnings(): warnings.simplefilter("ignore") for i in tqdm(positive_sample): #tools.make_vec(os.path.join(posi_dir,i),0,(posi_mel,posi_mfcc,posi_chroma)) try: mel, mfcc, chroma = tools.get_feature(os.path.join( posi_dir, i)) mel = [(0, j) for j in mel] mfcc = [(0, j) for j in mfcc] chroma = [(0, j) for j in chroma] posi_mel += mel posi_mfcc += mfcc posi_chroma += chroma tools.make_spec( os.path.join(posi_dir, i), os.path.join(data_dir, "posi_spectro", i[:-3] + "png")) except audioop.error: hi_res += 1 p_dump(posi_mel, "posi_mel") p_dump(posi_mfcc, "posi_mfcc") p_dump(posi_chroma, "posi_chroma") del posi_mel del posi_mfcc del posi_chroma print "start negative music feature extract" nega_mel = [] nega_chroma = [] nega_mfcc = [] for i in tqdm(negative_sample): #tools.make_vec(os.path.join(nega_dir,i),0,(nega_mel,nega_mfcc,nega_chroma)) try: mel, mfcc, chroma = tools.get_feature(os.path.join( nega_dir, i)) mel = [(1, j) for j in mel] mfcc = [(1, j) for j in mfcc] chroma = [(1, j) for j in chroma] nega_mel += mel nega_mfcc += mfcc nega_chroma += chroma tools.make_spec( os.path.join(nega_dir, i), os.path.join(data_dir, "nega_spectro", i[:-3] + "png")) except audioop.error: hi_res += 1 p_dump(nega_mel, "nega_mel") p_dump(nega_mfcc, "nega_mfcc") p_dump(nega_chroma, "nega_chroma") if hi_res: print "{} files are not used.it may be 24bit.".format(hi_res)