def writing_data_and_price_json_csv():
    cars_data = []
    cars_price = []
    # count = 0
    # count1 = 0
    for i in range(len(page_saving.brands)):
        for j in range(20):
            content = tools.file_content(
                f'captured_data/{page_saving.brands[i]}/{page_saving.brands[i]}_page_{j+1}.html'
            )
            for match_data in re.finditer(
                    pattern_data, content):  # for loop for appending car data
                # count += 1
                # print(match_data.groupdict())
                cars_data.append(match_data.groupdict())
            for match_price in re.finditer(
                    pattern_price,
                    content):  # for loop for appending car prices
                # count1 += 1
                cars_price.append(match_price.groupdict())
    # print(count, count1)
    tools.write_csv(cars_price, ['price'], 'cars_price.csv')
    tools.write_json(cars_price, 'cars_price.json')
    tools.write_json(cars_data, 'cars_data.json')
    tools.write_csv(cars_data, [
        'brand', 'model', 'first_registration', 'kilometers', 'engine',
        'transmission'
    ], 'cars_data.csv')
def model_evaluation(path_to_model_dir,
                     path_to_data_file,
                     save_path,
                     save_name,
                     output_dims=2):
    # load data
    test_data = get_ndarray(path_to_data_file)
    # load perplexities
    perp = int((path_to_model_dir / "perplexity.txt").read_text())
    # get transform
    transform = load_and_transform((path_to_model_dir / "model"), test_data,
                                   perp, output_dims)
    # write it out
    write_csv(transform, (save_path / save_name))
def run_standard_ptsne(test_name_path,
                       train_data_path,
                       test_data_path,
                       output_dims=2):
    # create a folder with the test_name
    os.mkdir(str(test_name_path))

    # get relevant data
    raw_data = get_ndarray(train_data_path)
    test_data = get_ndarray(test_data_path)
    input_dims = len(raw_data[0])
    perplexity = 30

    ptsne = Parametric_tSNE(input_dims, output_dims, perplexity)
    loss = ptsne.fit(raw_data, verbose=False)
    tform = ptsne.transform(test_data)

    # write out data
    write_loss(test_name_path, loss)
    write_csv(tform, (test_name_path / "tform.csv"))

    ptsne.clear_session()
示例#4
0
def run_generation(test_data,
                   gene_pool,
                   resident_directory,
                   genetic_helper,
                   input_dims,
                   output_dims,
                   generation_name,
                   log=False,
                   save_model=True):
    for child_num, dna in [(i + 1, j) for (i, j) in enumerate(gene_pool)]:
        child_name = "child_" + str(child_num)
        # make a folder for the child
        child_dir = resident_directory / child_name
        os.mkdir(str(child_dir))
        loss, model, tform = train_child(dna, genetic_helper, test_data,
                                         input_dims, output_dims, log)
        tools.write_loss(child_dir, loss)
        tools.write_dna(child_dir, dna)
        tools.write_csv(tform, (child_dir / "tform.csv"))
        if save_model:
            model.save_model(str(child_dir / "model"))
        if log:
            print(generation_name, " ", child_name, " trained")
        model.clear_session()
示例#5
0
# go through our flat 40 data
# use the info we have to retrain a model of that shape and structure
# get a tranform and save it

TARGET_FOLDER = Path.cwd(
) / "TestData" / "half_curve_layer_swap_40" / "generation_30"
SAVE_FOLDER = Path.cwd() / "Bred40_Tforms"
TRAINING_DATA = Path.cwd() / "RBMTrainingDataset" / "training_set.csv"
TEST_DATA = Path.cwd() / "RBMTrainingDataset" / "2018_data_eos.csv"

test_data = tools.get_ndarray(TEST_DATA)
input_dims = len(test_data[0])

train_data = tools.get_ndarray(TRAINING_DATA)

output_dims = 2

gh = G.Genetics()

for child in [c for c in TARGET_FOLDER.iterdir() if c.is_dir()]:
    # get the perp and layer sturcure for this child
    dna_string = tools.read_dna(child)
    perp, layers = gh.decode_dna(dna_string, legacy_dna=True)
    # train this model
    ptsne = Parametric_tSNE(input_dims, output_dims, perp, all_layers=layers)
    _ = ptsne.fit(train_data, verbose=False)
    transform = ptsne.transform(test_data)
    save_path = SAVE_FOLDER / (child.name + "_tform.csv")
    tools.write_csv(transform, save_path)
    ptsne.clear_session()
示例#6
0
def measure_layer(layer, x):
    global count_ops, count_params, module_number, modules_flops
    global modules_params, to_print,flops_file_path1
    delta_ops = 0
    delta_params = 0
    multi_add = 1
    if to_print:
        print("")

    type_name = get_layer_info(layer)

    ### ops_conv
    if type_name in ['Conv2d']:
        out_h = int((x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0]) /
                    layer.stride[0] + 1)
        out_w = int((x.size()[3] + 2 * layer.padding[1] - layer.kernel_size[1]) /
                    layer.stride[1] + 1)
        delta_ops = layer.in_channels * layer.out_channels * layer.kernel_size[0] *  \
                layer.kernel_size[1] * out_h * out_w / layer.groups * multi_add
        delta_params = get_layer_param(layer)
        if hasattr(layer, 'shared'):
            delta_params = delta_params / int(layer.shared)
        # module_number += 1
        # modules_flops.append(delta_ops)
        # modules_params.append(delta_params)
        # if to_print:
        #     print(layer)
        #     print("Module number: ", module_number)
        #     print("FLOPS:", delta_ops)
        #     print("Parameter:", delta_params)

    ### ops_nonlinearity
    elif type_name in ['ReLU']:
        delta_ops = x.numel()
        delta_params = get_layer_param(layer)
        # module_number += 1
        # modules_flops.append(delta_ops)
        # to_print:
        #   print(layer)
        #   print("Module number: ", module_number)
        #   print("FLOPS:", delta_ops)


    ### ops_pooling
    elif type_name in ['AvgPool2d']:
        in_w = x.size()[2]
        kernel_ops = layer.kernel_size * layer.kernel_size
        out_w = int((in_w + 2 * layer.padding - layer.kernel_size) / layer.stride + 1)
        out_h = int((in_w + 2 * layer.padding - layer.kernel_size) / layer.stride + 1)
        delta_ops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops
        delta_params = get_layer_param(layer)
        module_number += 1
        # if to_print:
        #     print(layer)
        #     print("Module number: ", module_number)
        #     print("Overrall FLOPS so far:",  count_ops)


    elif type_name in ['AdaptiveAvgPool2d']:
        delta_ops = x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3]
        delta_params = get_layer_param(layer)

    ### ops_linear
    elif type_name in ['Linear']:
        weight_ops = layer.weight.numel() * multi_add
        bias_ops = layer.bias.numel()
        delta_ops = x.size()[0] * (weight_ops + bias_ops)
        delta_params = get_layer_param(layer)
        if to_print:
            print(layer)
            print("Module number: ", module_number)
            print("Overrall FLOPS so far:", count_ops)
        #### save to the file
        print(flops_file_path1)
        # write_file(flops_file_path1,str(module_number)+','+str(count_ops))
        write_csv(flops_file_path1, [str(module_number),str(count_ops)])

    ### ops_nothing
    elif type_name in ['BatchNorm2d', 'Dropout2d', 'DropChannel', 'Dropout']:
        delta_params = get_layer_param(layer)

    ### unknown layer type
    else:
        raise TypeError('unknown layer type: %s' % type_name)

    count_ops += delta_ops
    count_params += delta_params
    layer.flops = delta_ops
    layer.params = delta_params
    return
示例#7
0
import tools

data = tools.read_csv(tools.path_vendas)

id = tools.write_csv(tools.path_vendas, data)

print(
    "sua ordem de serviço é: %05d\nGuarde o número, pois somente com ele, você conseguirá acompanhar o seu chamado"
    % id)
def select(select_object, candidates_object):
    if not os.path.isfile(select_object['path']):
        log.logger.critical('Cannot find master image: ' +
                            select_object['path'])
        exit(1)

    log.logger.info('Working on ' + select_object['qr'] +
                    ' with database id: ' + str(select_object['Id']))
    match = []

    for c in candidates_object:
        r = restore.extractTar(c['id'])
        if not os.path.isfile(r):
            log.logger.critical('Cannot find restore image: ' + r)
            exit(1)
        image.convertToJpeg(c['filename'], '/tmp/')
        match.append(
            image.matchHistogram(select_object['path'],
                                 '/tmp/' + c['name'] + '.jpg'))
        os.remove('/tmp/' + c['name'] + '.jpg')

    m = match.index(min(match))

    #print 'THE MATCH VALUE IS!!!: ' + str(min(match))

    #print select_object
    #print candidates_object[m]

    if select_object['scan_date'] is None:
        put_dir = os.path.join('/data/selected/', 'unknown_scandir')
    else:
        put_dir = os.path.join('/data/selected/',
                               str(select_object['scan_date']))

    jpg_put_dir = os.path.join(put_dir, 'jpeg')
    csv_put_dir = os.path.join(put_dir, 'csv')

    if not os.path.exists(put_dir):
        os.makedirs(jpg_put_dir)
    if not os.path.exists(jpg_put_dir):
        os.makedirs(jpg_put_dir)
    if not os.path.exists(csv_put_dir):
        os.makedirs(csv_put_dir)

    try:
        os.rename(candidates_object[m]['filename'],
                  os.path.join(put_dir, select_object['qr'] + '.tif'))
    except Exception as e:
        log.logger.critical('Could not move: ' +
                            candidates_object[m]['filename'] + ' to: ' +
                            os.path.join(put_dir, select_object['qr'] +
                                         '.tif'))
        log.logger.debug(e)
        exit(1)

    try:
        image.convertToJpeg(os.path.join(put_dir,
                                         select_object['qr'] + '.tif'),
                            jpg_put_dir,
                            thumbnail=True)
    except Exception as e:
        log.logger.critical('Could not create thumnail from: ' +
                            candidates_object[m]['filename'] + ' to: /tmp/' +
                            candidates_object[m]['name'] + '.jpg')
        log.logger.debug(e)
        exit(1)

    # try:
    #   f = open(os.path.join(jpg_put_dir,select_object['qr'] + '.txt'),'w')
    #   f.write('\\\\nnms125\\Master-Images' + select_object['path'][13:].replace('/','\\'))
    #   f.close()
    # except Exception as e:
    #   log.logger.error(e)

    for c in candidates_object:
        if os.path.exists(c['filename']):
            try:
                os.remove(c['filename'])
                log.logger.info('Succesfully removed temponary file: ' +
                                c['filename'])
            except Exception as e:
                log.logger.waring('Could not remove temponary file: ' +
                                  c['filename'] + ' Please cleanup manually')
                log.logger.debug(e)

    #['qr','check_it','tiff','jpg','master','scan_date','wag_jpg_link','box','analytics_database_id','best_match_value','second_best_match_value','match_factor','match_diff','correct','false_description']
    ma = tools.match_analytics(match)
    rowfill = [
        select_object['qr'],
        tools.checkit(1000, 80), '\\\\10.61.2.125\\selected\\' +
        str(select_object['scan_date']) + '\\' + select_object['qr'] + '.tif',
        '\\\\10.61.2.125\\selected\\' + str(select_object['scan_date']) +
        '\\jpeg\\' + select_object['qr'] + '.jpg',
        '\\\\nnms125\\Master-Images' +
        select_object['path'][13:].replace('/', '\\'),
        str(select_object['scan_date']),
        '\\\\nnm\\dino\\Digibarium\\FES herbarium digistraten\\' +
        select_object['match_file'].replace('/', '\\'),
        select_object['match_box'], select_object['Id'], ma[0], ma[1], ma[2],
        ma[3]
    ]

    tools.write_csv(
        os.path.join(csv_put_dir,
                     str(select_object['scan_date']) + '.csv'),
        rowfill,
    )
def select(select_object,candidates_object):
  if not os.path.isfile(select_object['path']):
    log.logger.critical('Cannot find master image: ' + select_object['path'])
    exit(1)

  log.logger.info('Working on ' + select_object['qr'] + ' with database id: ' + str(select_object['Id']))
  match = []

  for c in candidates_object:
    r = restore.extractTar(c['id'])
    if not os.path.isfile(r):
      log.logger.critical('Cannot find restore image: ' + r)
      exit(1)
    image.convertToJpeg(c['filename'],'/tmp/')
    match.append(image.matchHistogram(select_object['path'],'/tmp/' + c['name'] + '.jpg'))
    os.remove('/tmp/' + c['name'] + '.jpg')

  m = match.index(min(match))

  #print 'THE MATCH VALUE IS!!!: ' + str(min(match))

  #print select_object
  #print candidates_object[m]

  if select_object['scan_date'] is None:
    put_dir = os.path.join('/data/selected/','unknown_scandir')
  else:
    put_dir = os.path.join('/data/selected/',str(select_object['scan_date']))

  jpg_put_dir = os.path.join(put_dir,'jpeg')
  csv_put_dir = os.path.join(put_dir,'csv')

  if not os.path.exists(put_dir):
    os.makedirs(jpg_put_dir)
  if not os.path.exists(jpg_put_dir):
    os.makedirs(jpg_put_dir)
  if not os.path.exists(csv_put_dir):
    os.makedirs(csv_put_dir)

  try:
    os.rename(candidates_object[m]['filename'],os.path.join(put_dir,select_object['qr'] + '.tif'))
  except Exception as e:
    log.logger.critical('Could not move: ' + candidates_object[m]['filename'] + ' to: ' + os.path.join(put_dir,select_object['qr'] + '.tif'))
    log.logger.debug(e)
    exit(1)

  try:
    image.convertToJpeg(os.path.join(put_dir,select_object['qr'] + '.tif'),jpg_put_dir,thumbnail=True)
  except Exception as e:
    log.logger.critical('Could not create thumnail from: ' + candidates_object[m]['filename'] + ' to: /tmp/' + candidates_object[m]['name'] + '.jpg')
    log.logger.debug(e)
    exit(1)

  # try:
  #   f = open(os.path.join(jpg_put_dir,select_object['qr'] + '.txt'),'w')
  #   f.write('\\\\nnms125\\Master-Images' + select_object['path'][13:].replace('/','\\'))
  #   f.close()
  # except Exception as e:
  #   log.logger.error(e)

  for c in candidates_object:
    if os.path.exists(c['filename']):
      try:
        os.remove(c['filename'])
        log.logger.info('Succesfully removed temponary file: ' + c['filename'])
      except Exception as e:
        log.logger.waring('Could not remove temponary file: ' + c['filename'] + ' Please cleanup manually')
        log.logger.debug(e)

  #['qr','check_it','tiff','jpg','master','scan_date','wag_jpg_link','box','analytics_database_id','best_match_value','second_best_match_value','match_factor','match_diff','correct','false_description']
  ma = tools.match_analytics(match)
  rowfill = [select_object['qr'],
             tools.checkit(1000,80),
             '\\\\10.61.2.125\\selected\\' + str(select_object['scan_date']) + '\\' + select_object['qr'] + '.tif',
             '\\\\10.61.2.125\\selected\\' + str(select_object['scan_date']) + '\\jpeg\\' + select_object['qr'] + '.jpg',
             '\\\\nnms125\\Master-Images' + select_object['path'][13:].replace('/','\\'),
             str(select_object['scan_date']),
             '\\\\nnm\\dino\\Digibarium\\FES herbarium digistraten\\' + select_object['match_file'].replace('/','\\'),
             select_object['match_box'],
             select_object['Id'],
             ma[0],
             ma[1],
             ma[2],
             ma[3]
             ]

  tools.write_csv(os.path.join(csv_put_dir,str(select_object['scan_date']) + '.csv'),
                  rowfill,
                  )
# csv
import random
import tools

data = tools.read_csv("persons.csv")
for row in data[1:]:
    row[1] = int(row[1]) + 1

data[0].append("Education")
for row in data[1:]:
    row.append(random.choice([0, 1]))
tools.write_csv("test_2.csv", data)

# header = data.pop(0)
# for row in data:
#     print(row[1])
# data = [header] + data

filename = "persons.csv"
data = tools.read_dict_csv(filename=filename)
for row in data:
    row["Education"] = random.choice([0, 1])

tools.write_dict_csv("persons_2.csv", data)
print(data)
def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    top1_per_cls = [AverageMeter() for i in range(0, model.module.num_blocks)]
    ###### initialize a AverageMeter() list whose size is the number of classifiers
    top5_per_cls = [AverageMeter() for i in range(0, model.module.num_blocks)]

    ### Switch to evaluate mode
    model.eval()

    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        # target = target.cuda(async=True)
        target = target.cuda(non_blocking=True)
        # input_var = torch.autograd.Variable(input, volatile=True)
        # target_var = torch.autograd.Variable(target, volatile=True)

        ### Compute output
        with torch.no_grad():
            output = model(input, 0.0)
            if args.model == 'msdnet':
                loss = msd_loss(output, target, criterion)  #####?
            else:
                loss = criterion(output, target)

        ### Measure accuracy and record loss
        if hasattr(output, 'data'):
            prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
        elif args.model == 'msdnet':
            prec1, prec5, _ = msdnet_accuracy(output, target, input)
        # losses.update(loss.data[0], input.size(0))
        losses.update(loss.data.item(), input.size(0))
        # top1.update(prec1[0], input.size(0))
        top1.update(
            prec1.item(), input.size(0)
        )  ####### a list storing mean precision of top1 for all classifiers
        # top5.update(prec5[0], input.size(0))
        top5.update(prec5.item(), input.size(0))

        ### Measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # if i % args.print_freq == 0:
        #     print('Test: [{0}/{1}]\t'
        #           'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
        #           'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
        #           'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
        #           'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
        #               i, len(val_loader), batch_time=batch_time, loss=losses,
        #               top1=top1, top5=top5))

        _, _, (ttop1s, ttop5s) = msdnet_accuracy(output,
                                                 target,
                                                 input,
                                                 val=True)
        ###### ttop1s and ttop5s: the list stores prec1 or prec5 for each classifier, whose size is the number of classifier
        for c in range(0, len(top1_per_cls)):  ####### for each classifier
            top1_per_cls[c].update(
                ttop1s[c], input.size(0)
            )  ####### top1_per_cls[c] stores prec1 for classifier c(1¬10) for all epoches
            top5_per_cls[c].update(ttop5s[c], input.size(0))

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'.format(top1=top1,
                                                                  top5=top5))
    for c in range(0, len(top1_per_cls)):  ####### for each classifier
        print(
            ' * For classifier {cls}: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
            .format(cls=c, top1=top1_per_cls[c], top5=top5_per_cls[c]))
        # save to the file
        print(acc_file_path)
        # write_file(acc_file_path, str(c)+','+str(top1_per_cls[c].avg))
        write_csv(acc_file_path, [str(c), str(top1_per_cls[c].avg)])

    return 100. - top1.avg, 100. - top5.avg  ######### the final clasifier's mean value
def advanced_evaluate(geno_type, file_path, test_mode=False, save_mode=False):

    if not test_mode:
        print("Now we are evaluating models from genetic algorithm.")
    else:
        print("Now we are evaluating test models")

    # read data from windblade data
    img_path = 'C:/Users/admin/PycharmProjects/genetic-algorithm/dataset_blades/'
    X, Y, x_test, y_test = get_windblade_data(img_path, 8024, 0)

    # read data from cifar-10
    # X, Y, X_test, Y_test = cifar_data(30000, 0)

    idx = [i for i in range(len(Y))]
    print('before shuffle index is ', idx)
    random.Random(0).shuffle(idx)
    print('have a look at index', idx)
    X = X[idx]
    Y = Y[idx]
    X = np.squeeze(X)
    Y = np.squeeze(Y)

    print('number of samples is:', X.shape, Y.shape)

    seed = 7
    k_fold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)
    es = EarlyStopping(monitor='val_loss', patience=15, verbose=0, mode='min')
    rl = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=5, min_lr=0)

    callbacks = [es, rl]
    for key in geno_type:
        if True:
            print(
                '================================ start advanced evaluation ==============================='
            )
            print('finishing model building part')
            cv_scores = []
            cv_accuracy = []
            print('start to train on k-fold validation ... ...')
            for train, test in k_fold.split(X, Y):
                model, model_test = geno2model(geno_type[key])

                #
                # print(type(y_train), type(y_test))
                # print('+++++++ have check at y train:', np.sum(y_train), y_train.size)
                # print('+++++++ have a check at y test', np.sum(y_test), y_test.size)

                print('have a look at Y distribution', Y[train][100:110],
                      Y[test][23:33])
                print('the size of Y train is', Y[train].size)
                print('the sum of Y train is', np.sum(Y[train]))
                print('the size of Y test is', Y[test].size)
                print('the sum of Y test is', np.sum(Y[test]))

                if not test_mode:
                    model.compile(optimizer=optimizers.Adam(lr=0.001),
                                  loss=losses.categorical_crossentropy,
                                  metrics=['accuracy'])
                else:
                    model_test.compile(optimizer=optimizers.SGD(lr=0.001),
                                       loss=losses.mean_squared_error,
                                       metrics=['accuracy'])

                print('model compile finished')

                x_train = X[train]
                # y_train = np_utils.to_categorical(Y[train])
                x_test = X[test]
                # y_test = np_utils.to_categorical(Y[test])

                # x_train = preprocess_input(x_train)
                # x_test = preprocess_input(x_test)

                x_train, x_test = normalize(x_train, x_test)

                print(
                    "=======================Have a look at input after normalization==============================="
                )
                print(np.sum(x_train))

                y_train = Y[train]
                y_test = Y[test]

                print('data preparation finished')

                if not test_mode:
                    model.fit(x_train,
                              y_train,
                              validation_split=0.15,
                              epochs=100,
                              batch_size=32,
                              verbose=1,
                              callbacks=callbacks)
                else:
                    model_test.fit(x_train,
                                   y_train,
                                   validation_split=0.2,
                                   epochs=100,
                                   batch_size=8,
                                   verbose=1,
                                   callbacks=callbacks)
                print('model training finished')

                if test_mode:
                    input("press enter to continue and get evaluating result")

                if not test_mode:
                    score, acc = model.evaluate(x_test, y_test, verbose=1)
                else:
                    score, acc = model_test.evaluate(x_test, y_test, verbose=1)
                cv_accuracy.append(acc)
                cv_scores.append(score)
                print(
                    '========== the score of current round is %f, accuracy is %f ===================='
                    % (score, acc))

            input("press enter to continue")
            print('cross validation scores:', cv_scores, cv_accuracy)
            geno_type[key]['ad_score'] = [
                np.mean(cv_scores),
                np.mean(cv_accuracy),
                np.std(cv_accuracy)
            ]
            geno_type[key]['flag_change_ad'] = False

            if K.backend() == 'tensorflow':
                K.clear_session()
            if save_mode:
                trainable_count = int(
                    np.sum([
                        K.count_params(p) for p in set(model.trainable_weights)
                    ]))
                # write genotype into csv file
                write_csv(file_path,
                          geno_type[key],
                          ite_idx=0,
                          num_paras=trainable_count)
        else:
            print(
                '================= No changes to the model, so not necessary to re-train again ==================='
            )

        if test_mode:
            continue

    return geno_type
def evaluate(genotype,
             ite_idx,
             num_train,
             num_test,
             file_path,
             save_model=False):
    acc = np.zeros((len(genotype), 1))
    i = 0
    if ite_idx == 0 and save_model:
        create_csv(file_path)

    for key in genotype:
        if genotype[key]['flag_change']:
            print("======= iteration idx is %d ======" % ite_idx)
            print("======= genotype idx is %d =======" % i)
            dict_print(genotype[key])
            model, model_test = geno2model(genotype[key])
            # x_train, y_train = get_data(
            #     'C:/Users/zhu/PycharmProjects/GeneticAlgorithm/BloodCell/dataset2-master/images/TRAIN/', 800)

            # x_train, y_train = get_data_cifar([2,3], 3000)
            # x_test, y_test = get_data_cifar([4], 800)

            es = EarlyStopping(monitor='val_loss', patience=15, verbose=0)
            rl = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5)
            callbacks = [es, rl]

            img_path = 'C:/Users/admin/PycharmProjects/genetic-algorithm/dataset_blades/'
            x_train, y_train, x_test, y_test = get_windblade_data(
                img_path, num_train, num_test)

            # convert y into one hot matrix
            y_train = np_utils.to_categorical(y_train, 2)
            y_test = np_utils.to_categorical(y_test, 2)
            print(x_train.shape)
            print(y_train.shape)

            model.compile(optimizer=optimizers.Adam(lr=0.001),
                          loss=losses.categorical_crossentropy,
                          metrics=['accuracy'])
            history = model.fit(x=x_train,
                                y=y_train,
                                batch_size=32,
                                epochs=10,
                                verbose=0,
                                shuffle=True,
                                validation_data=(x_test, y_test),
                                callbacks=callbacks)
            print(history.history['val_acc'][-1])
            # y_test = model_test.predict(x = x_train[10])
            # print('the predicting value is',y_test, 'ground truth is', y_train[10])

            candidate = genotype[key]
            candidate['score'] = history.history['val_acc'][-1]
            candidate['flag_change'] = False
            i = i + 1

            if save_model:
                # count trainable parameters
                trainable_count = int(
                    np.sum([
                        K.count_params(p) for p in set(model.trainable_weights)
                    ]))
                # write genotype into csv file
                write_csv(file_path, candidate, ite_idx, trainable_count)

            if K.backend() == 'tensorflow':
                K.clear_session()
        else:
            print(
                '================= No changes to the model, so not necessary to re-train again ==================='
            )
            if save_model:
                candidate = genotype[key]
                write_csv(file_path, candidate, ite_idx, num_paras=0)

    return genotype
示例#14
0
from core import Parametric_tSNE
from report_writing import log_basic_test_params
import pandas as pd
import training_evaluation as eval
import Genetics

# import mnist data and ensure its in a workable format (i think i already did this legwok)
train_data = pd.read_csv(str(Path.cwd() / 'Formatted_MNIST_Data' /
                             'formatted_mnist_train.csv'),
                         sep=',',
                         header=None).values
test_data = pd.read_csv(str(Path.cwd() / 'Formatted_MNIST_Data' /
                            'formatted_mnist_test.csv'),
                        sep=',',
                        header=None).values

# instance a ptsne network and train the dataset using training data
ptsne = Parametric_tSNE(784, 2, 30)
print("starting to train...")
loss = ptsne.fit(train_data, verbose=True)
print('done training....')
tform = ptsne.transform(test_data)

save_path = Path.cwd() / 'MNIST_testing'

tools.write_loss(save_path, loss)
tools.write_csv(tform, (save_path / "tform.csv"))

# graph and save