def save_data(data):
    try:
        (img, time, data) = data
        file_name = time.strftime("%H_%M_%S")

        write_img(img, DAY_DIR / (file_name + ".jpg"))

        (processed_img, robot) = data
        processed_img: robot_finder.ProcessedImg = processed_img
        write_img(processed_img.img, DAY_DIR / (file_name + "_proc.jpg"))

        with (DAY_DIR / (file_name + ".json")).open('w') as fp:
            json.dump(
                {
                    "blue_pts": processed_img.blue_pts,
                    "red_pts": processed_img.red_pts,
                    "robot": robot,
                },
                fp,
                indent=4,
                cls=JSONEncoder,
            )

    except Exception as e:
        logging.fatal("Error while saving data...", exc_info=e)
示例#2
0
def predict(data_dir, output_dir, X, mode, pred):
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
    for i in range(0, 15000, 5000):
        for j in range(0, 15000, 5000):
            one_data = '%s/tile_%d_%d.tif' % (data_dir, i, j)
            one_data_output = '%s/pred_tile_%d_%d.tif' % (output_dir, i, j)
            print ("predict tile_%d_%d.tif" % (i, j))
            proj, geotrans, input_img = read_img(one_data)
            label_pred_tiny = predict_img_with_smooth_windowing(
                input_img,
                window_size=768,
                subdivisions=2,
                batch_size=8,
                pred_func=(
                    lambda img: sess.run(pred, feed_dict={X: img, mode: False})
                )
            )
            label_pred_tiny = label_pred_tiny[:, :, 0]
            # label_pred_tiny[np.where(label_pred_tiny >= 0.3)] = 255
            label_pred_tiny[label_pred_tiny<0.1] = 0
            label_pred_tiny = label_pred_tiny.astype(np.float32)
            write_img(one_data_output, proj, geotrans, label_pred_tiny)
示例#3
0
def post_process(prediction, class_idx, z_mask, out_path):
    # print('post processing ...')
    # 4. make predicted map and label map have the same index
    # print('prediction', np.unique(np.ravel(prediction)))

    # ind_mask = []
    class_idx.reverse()
    for i, num in enumerate(class_idx):
        ind_mask = (prediction == len(class_idx)-i-1)
        # print(i, np.sum(ind_mask[-1]))
        prediction[ind_mask] = num

    # print('prediction', np.unique(np.ravel(prediction)))
    prediction[z_mask.astype(np.bool)] = 0
    # print('prediction', np.unique(np.ravel(prediction)))

    # 5. store prediction result
    im_projection, im_geo_transformation = read_img(flags.image, only_coordinate=True)
    write_img(filename=out_path, im_proj=im_projection, im_geotrans=im_geo_transformation, im_data=prediction)
    # print('post process done ! now store the image')
    # io.imsave(out_path, prediction)
    class_idx.reverse()
    return prediction
示例#4
0
    # make predicted map and label map have the same index
    ind_mask = []
    for i, num in enumerate(class_idx):
        ind_mask.append(prediction == i)
        # print(i, np.sum(ind_mask[-1]))
    for i, num in enumerate(class_idx):
        prediction[ind_mask[i]] = num
    prediction[zero_mask] = 0

    print(np.unique(np.ravel(prediction)))

    # generate pseudo color
    colors = np.random.randint(0,
                               255,
                               size=(len(class_idx) * 3, ),
                               dtype=np.uint8).reshape(-1, 3)
    pseudo = np.zeros((prediction.shape[0], prediction.shape[1], 3),
                      dtype=np.uint8)
    print(colors)
    for i, idx in enumerate(class_idx):
        pseudo[prediction == idx, :] = colors[i, :]

    im_proj, im_geotrans = read_img(flags.image, only_coordinate=True)
    write_img(filename=flags.output,
              im_proj=im_proj,
              im_geotrans=im_geotrans,
              im_data=prediction)
    # io.imsave(flags.output, prediction)
    io.imsave('./pseudo.png', pseudo)
示例#5
0
def predict(data_dir, output_dir, X, mode, pred):

    print("reading image...")
    proj, geotrans, input_img = read_img(data_dir)
    # input_img[:, :, [2, 0]] = input_img[:, :, [0, 2]]
    input_img = input_img[:, :, :3]
    print(input_img.shape)
    input_img = np.asarray(input_img, dtype='uint8')

    step = 32
    height, width, _ = input_img.shape
    print(height // step)
    print(width // step)
    for i in range(height // step):
        if i == height // step and height // step != 0:
            continue
        for j in range(width // step + 1):
            if j == width // step and width // step != 0:
                continue
            last_height_value = (
                i + 1) * step if i + 1 != height // step else height
            last_width_value = (j +
                                1) * step if j + 1 != width // step else width
            cv2.imwrite(
                '%s/tmp_%d_%d.jpg' % (tmp_dir, i, j),
                input_img[i * step:last_height_value,
                          j * step:last_width_value, :])
            print('%s/tmp_%d_%d.jpg write done' % (tmp_dir, i, j))

    del input_img
    gc.collect()
    print("done1")
    label_pred = np.zeros((height, width), dtype=np.uint8)
    for i in range(height // step):
        if i == height // step and height // step != 0:
            continue
        for j in range(width // step + 1):
            if j == width // step and width // step != 0:
                continue
            last_height_value = (
                i + 1) * step if i + 1 != height // step else height
            last_width_value = (j +
                                1) * step if j + 1 != width // step else width
            print(last_height_value, last_width_value)
            print('%s/tmp_%d_%d.jpg' % (tmp_dir, i, j))
            img_tiny = cv2.imread('%s/tmp_%d_%d.jpg' % (tmp_dir, i, j))
            print(img_tiny)
            label_pred_tiny = predict_img_with_smooth_windowing(
                img_tiny,
                window_size=32,
                subdivisions=2,
                batch_size=64,
                pred_func=(
                    lambda img: sess.run(pred, feed_dict={
                        X: img,
                        mode: False
                    })))
            label_pred_tiny = label_pred_tiny[:, :, 0]
            label_pred_tiny[np.where(label_pred_tiny >= 0.5)] = 1
            label_pred_tiny[np.where(label_pred_tiny < 0.5)] = 0
            label_pred_tiny = label_pred_tiny.astype(np.uint8)
            label_pred[i * step:last_height_value,
                       j * step:last_width_value] = label_pred_tiny

    gc.collect()
    print("done2")
    # cv2.imwrite(output_dir, label_pred)
    write_img(output_dir, proj, geotrans, label_pred)

    print("done3")
示例#6
0
import tifffile as tif
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import cv2
from tools import read_img, write_img

if __name__ == "__main__":
    pred_label_file = "../data/pine/pred_classes.tif"
    test_label_file = "../data/pine/test_classes.tif"
    pred_label_file_png = "../data/pine/pred_classes.png"
    proj, geotrans, input_img = read_img(test_label_file)
    pred = cv2.imread(pred_label_file)
    write_img(pred_label_file, proj, geotrans, pred)