示例#1
0
def processFile(js_file_path):
    
    pid = int(multiprocessing.current_process().ident)
    
    try:
        signal.alarm(600)
        
        prepro = Preprocessor(js_file_path)
        prepro.write_temp_file('tmp_%d.js' % pid)
            
        beauty = Beautifier()
        ok = beauty.run('tmp_%d.js' % pid, 'tmp_%d.b.js' % pid)
        
        if ok:
            mc = MiniChecker('tmp_%d.b.js' % pid)
            try:
                isMini = mc.compare(keep_mini=False)
            except Exception as e:
                isMini = str(e)
                
            cleanup(pid)
            return [os.path.basename(js_file_path), isMini]
        
        else:
            cleanup(pid)
            return [os.path.basename(js_file_path), 'Beautifier failed']
        
    except TimeExceededError:
        
        cleanup(pid)
        return [os.path.basename(js_file_path), 'Timeout']
示例#2
0
def processFile(l):

    js_file_path = l[0]

    pid = int(multiprocessing.current_process().ident)

    try:
        # Temp files to be created during processing
        path_tmp = 'tmp_%d.js' % pid
        path_tmp_b = 'tmp_%d.b.js' % pid

        # Strip comments, replace literals, etc
        try:
            prepro = Preprocessor(os.path.join(corpus_root, js_file_path))
            prepro.write_temp_file(path_tmp)
        except:
            cleanup(pid)
            return (js_file_path, None, 'Preprocessor fail')

        # Pass through beautifier to fix layout
        clear = Beautifier()
        ok = clear.run(path_tmp, path_tmp_b)

        if not ok:
            cleanup(pid)
            return (js_file_path, None, 'Beautifier fail')

        try:
            iBuilder_clear = IndexBuilder(Lexer(path_tmp_b).tokenList)
        except:
            cleanup(pid)
            return (js_file_path, None, 'IndexBuilder fail')

        n_lines = len(iBuilder_clear.tokens)
        max_line_len = max([len(l) for l in iBuilder_clear.tokens])

        cleanup(pid)
        return (js_file_path, n_lines, max_line_len)

    except Exception, e:
        cleanup(pid)
        return (js_file_path, None, str(e))
示例#3
0
def processFile(row):

    js_file_path = os.path.join(corpus_root, row[0])

    pid = int(multiprocessing.current_process().ident)
    base_name = os.path.splitext(os.path.basename(js_file_path))[0]

    # Temp files to be created during processing
    temp_files = {
        'path_tmp': 'tmp_%d.js' % pid,
        'path_tmp_b': 'tmp_%d.b.js' % pid,
        'path_tmp_b_a': 'tmp_%d.b.a.js' % pid,
        'path_tmp_u': 'tmp_%d.u.js' % pid,
        'path_tmp_u_a': 'tmp_%d.u.a.js' % pid
    }

    try:
        # Pass through beautifier to fix layout:
        #         # - once through JSNice without renaming
        #         jsNiceBeautifier = JSNice(flags=['--no-types', '--no-rename'])
        #
        #         (ok, _out, _err) = jsNiceBeautifier.run(js_file_path,
        #                                                temp_files['path_tmp'])
        #         if not ok:
        #             cleanup(temp_files)
        #             return (js_file_path, False, 'JSNice Beautifier fail')
        #
        #
        #         # Weird JSNice renamings despite --no-rename
        #         try:
        #             before = set([token for (token, token_type) in
        #                           Lexer(js_file_path).tokenList
        #                           if is_token_subtype(token_type, Token.Name)])
        #             after = set([token for (token, token_type) in
        #                           Lexer(temp_files['path_tmp']).tokenList
        #                           if is_token_subtype(token_type, Token.Name)])
        #
        #             if not before == after:
        #                 return (js_file_path, False, 'Weird JSNice renaming')
        #
        #         except:
        #             cleanup(temp_files)
        #             return (js_file_path, False, 'Lexer fail')

        # Strip comments, replace literals, etc
        try:
            prepro = Preprocessor(os.path.join(corpus_root, js_file_path))
            prepro.write_temp_file(temp_files['path_tmp'])
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Preprocessor fail')

        # - and another time through uglifyjs pretty print only
        clear = Beautifier()
        ok = clear.run(temp_files['path_tmp'], temp_files['path_tmp_b'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, False, 'Beautifier fail')

        # Minify
        ugly = Uglifier()
        ok = ugly.run(temp_files['path_tmp_b'], temp_files['path_tmp_u'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, False, 'Uglifier fail')

        # Num tokens before vs after
        try:
            tok_clear = Lexer(temp_files['path_tmp_b']).tokenList
            tok_ugly = Lexer(temp_files['path_tmp_u']).tokenList
        except:
            cleanup(temp_files)
            return (js_file_path, False, 'Lexer fail')

        # For now only work with minified files that have
        # the same number of tokens as the originals
        if not len(tok_clear) == len(tok_ugly):
            cleanup(temp_files)
            return (js_file_path, False, 'Num tokens mismatch')

        # Align minified and clear files, in case the beautifier
        # did something weird
        try:
            aligner = Aligner()
            # This is already the baseline corpus, no (smart) renaming yet
            aligner.align(temp_files['path_tmp_b'], temp_files['path_tmp_u'])
        except:
            cleanup(temp_files)
            return (js_file_path, False, 'Aligner fail')

        # Check if minification resulted in any change
        # It's not very interesting otherwise
        if open(temp_files['path_tmp_b_a']).read() == \
                open(temp_files['path_tmp_u_a']).read():
            cleanup(temp_files)
            return (js_file_path, False, 'Not minified')

        try:
            lex_ugly = Lexer(temp_files['path_tmp_u_a'])
            _iBuilder_ugly = IndexBuilder(lex_ugly.tokenList)
        except:
            cleanup(temp_files)
            return (js_file_path, False, 'IndexBuilder fail')

        # Store original and uglified versions
        ok = clear.run(temp_files['path_tmp_b_a'],
                       os.path.join(output_path, '%s.js' % base_name))
        if not ok:
            cleanup(temp_files)
            cleanupProcessed(base_name)
            return (js_file_path, False, 'Beautifier fail')

        ok = clear.run(temp_files['path_tmp_u_a'],
                       os.path.join(output_path, '%s.u.js' % base_name))
        if not ok:
            cleanup(temp_files)
            cleanupProcessed(base_name)
            return (js_file_path, False, 'Beautifier fail')

        cleanup(temp_files)
        return (js_file_path, True, 'OK')

    except Exception, e:
        cleanup(temp_files)
        return (js_file_path, False, str(e))
示例#4
0
def processFile(l):
    
    js_file_path = l[0]
    
    if js_file_path in seen:
        return (js_file_path, None, 'Skipped')
    
    pid = int(multiprocessing.current_process().ident)
    
    # Temp files to be created during processing
    temp_files = {'path_tmp': 'tmp_%d.js' % pid,
                  'path_tmp_b': 'tmp_%d.b.js' % pid,
                  'path_tmp_b_n': 'tmp_%d.b.n.js' % pid,
                  'path_tmp_u': 'tmp_%d.u.js' % pid,
                  'path_tmp_u_n': 'tmp_%d.u.n.js' % pid,
                  'path_tmp_b_a': 'tmp_%d.b.a.js' % pid,
                  'path_tmp_u_a': 'tmp_%d.u.a.js' % pid}
    
    try:        
        # Strip comments, replace literals, etc
        try:
            prepro = Preprocessor(os.path.join(corpus_root, js_file_path))
            prepro.write_temp_file(temp_files['path_tmp'])
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Preprocessor fail')
        
        
        # Pass through beautifier to fix layout:
        # - once through JSNice without renaming
#         jsNiceBeautifier = JSNice(flags=['--no-types', '--no-rename'])
#         
#         (ok, _out, _err) = jsNiceBeautifier.run(temp_files['path_tmp'], 
#                                                 temp_files['path_tmp_b_n'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'JSNice Beautifier fail')
        
        
#         # - and another time through uglifyjs pretty print only 
#         clear = Beautifier()
#         ok = clear.run(temp_files['path_tmp_b_n'], 
#                        temp_files['path_tmp_b'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Beautifier fail')
        
#         # JSNice is down! 
        clear = Beautifier()
        ok = clear.run(temp_files['path_tmp'], 
                       temp_files['path_tmp_b_n'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Beautifier fail')
        # Normalize
        norm = Normalizer()
        ok = norm.run(os.path.join(os.path.dirname(os.path.realpath(__file__)), 
                                 temp_files['path_tmp_b_n']),
                      False, 
                      temp_files['path_tmp_b'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Normalizer fail')
        
        
        
        # Minify
        ugly = Uglifier()
        ok = ugly.run(temp_files['path_tmp_b'], 
                      temp_files['path_tmp_u_n'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Uglifier fail')
        # Normalize
        norm = Normalizer()
        ok = norm.run(os.path.join(os.path.dirname(os.path.realpath(__file__)), 
                                 temp_files['path_tmp_u_n']),
                      False, 
                      temp_files['path_tmp_u'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Normalizer fail')
        
        
        
        # Num tokens before vs after
        try:
            tok_clear = Lexer(temp_files['path_tmp_b']).tokenList
            tok_ugly = Lexer(temp_files['path_tmp_u']).tokenList
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Lexer fail')
        
        # For now only work with minified files that have
        # the same number of tokens as the originals
        if not len(tok_clear) == len(tok_ugly):
            cleanup(temp_files)
            return (js_file_path, None, 'Num tokens mismatch')
        
        
        # Align minified and clear files, in case the beautifier 
        # did something weird
        try:
            aligner = Aligner()
            # This is already the baseline corpus, no (smart) renaming yet
            aligner.align(temp_files['path_tmp_b'], 
                          temp_files['path_tmp_u'])
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Aligner fail')
        
        try:
            lex_clear = Lexer(temp_files['path_tmp_b_a'])
            iBuilder_clear = IndexBuilder(lex_clear.tokenList)
            
            lex_ugly = Lexer(temp_files['path_tmp_u_a'])
            iBuilder_ugly = IndexBuilder(lex_ugly.tokenList)
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'IndexBuilder fail')
        
        
        
        # Normalize
        norm = Normalizer()
        ok = norm.run(os.path.join(os.path.dirname(os.path.realpath(__file__)), 
                                 temp_files['path_tmp_b']),
                      True, 
                      temp_files['path_tmp_u_n'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Normalizer fail')
        
        try:
            lex_norm = Lexer(temp_files['path_tmp_u_n'])
            iBuilder_norm = IndexBuilder(lex_norm.tokenList)
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'IndexBuilder fail')
        
        normalized = []
        for line_idx, line in enumerate(iBuilder_norm.tokens):
            normalized.append(' '.join([t for (_tt,t) in line]) + "\n")
        
        
        
        # Compute scoping: name2scope is a dictionary where keys
        # are (name, start_index) tuples and values are scope identifiers. 
        # Note: start_index is a flat (unidimensional) index, 
        # not a (line_chr_idx, col_chr_idx) index.
        try:
            scopeAnalyst = ScopeAnalyst(os.path.join(
                                 os.path.dirname(os.path.realpath(__file__)), 
                                 temp_files['path_tmp_u_a']))
#             _name2defScope = scopeAnalyst.resolve_scope()
#             _isGlobal = scopeAnalyst.isGlobal
#             _name2useScope = scopeAnalyst.resolve_use_scope()
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'ScopeAnalyst fail')
        
        orig = []
        no_renaming = []
        
        for line_idx, line in enumerate(iBuilder_ugly.tokens):
            orig.append(' '.join([t for (_tt,t) in \
                                  iBuilder_clear.tokens[line_idx]]) + "\n")
            
            no_renaming.append(' '.join([t for (_tt,t) in line]) + "\n")
            
#         # Simple renaming: disambiguate overloaded names using scope id
        basic_renaming = renameUsingScopeId(scopeAnalyst, 
                                            iBuilder_ugly)
        
        # More complicated renaming: collect the context around  
        # each name (global variables, API calls, punctuation)
        # and build a hash of the concatenation.
#         hash_renaming = renameUsingHashAllPrec(scopeAnalyst, 
#                                                 iBuilder_ugly,
#                                                 debug=True)
        
        hash_def_one_renaming = renameUsingHashDefLine(scopeAnalyst, 
                                                   iBuilder_ugly, 
                                                   twoLines=False,
                                                   debug=False)

        hash_def_two_renaming = renameUsingHashDefLine(scopeAnalyst, 
                                                    iBuilder_ugly, 
                                                    twoLines=True,
                                                    debug=False)

        cleanup(temp_files)
        return (js_file_path,
                orig, 
                no_renaming, 
                basic_renaming,
                normalized, 
#                 hash_renaming,
                hash_def_one_renaming,
                hash_def_two_renaming)
        
    except Exception, e:
        cleanup(temp_files)
        return (js_file_path, None, str(e))
示例#5
0
def detect_images(image_path, model_path, configfile, output_dir):
    # Load model
    configs = configparser.ConfigParser()
    configs.read(configfile)

    configs = configparser.ConfigParser()
    configs.read(configfile)

    try:
        input_shape = json.loads(configs['MODEL']['input_shape'])
        try:
            ratios = json.loads(configs['MODEL']['ratios'])
            scales = json.loads(configs['MODEL']['scales'])
        except Exception as e:
            print(e)
            print('USING DEFAULT RATIOS AND SCALES')
            ratios = None
            scales = None

    except:
        print("CONFIG FILE DOES NOT HAVE INPUT_SHAPE")
        sys.exit()

    preprocessor = Preprocessor(input_width=input_shape[2],
                                input_height=input_shape[1],
                                mean=np.array([[[0.485, 0.456, 0.406]]]),
                                std=np.array([[[0.229, 0.224, 0.225]]]))
    postprocessor = PostProcessor(ratios=ratios, scales=scales)

    # Get labelmap
    labels = load_classes_from_configfile(configfile)

    # GPU WARMUP
    img_name = [
        i for i in os.listdir(image_path) if i.endswith((
            '.jpg',
            '.png',
        ))
    ][0]
    image, image_orig, batch, scales = preprocess_image(
        os.path.join(image_path, img_name), preprocessor)
    gpu_warmup(image_orig, trt_engine_path=model_path)

    print('Getting engine')
    engine = get_engine(model_path)
    print('Engine retrieved')
    context = engine.create_execution_context()
    print('Execution context created')

    inputs, outputs, bindings, stream = common.allocate_buffers(engine)
    print('Buffers allocated')

    input_shapes = []
    output_shapes = []

    for binding in engine:
        if engine.binding_is_input(binding):
            input_shapes.append(engine.get_binding_shape(binding))
        else:  # and one output
            output_shapes.append(engine.get_binding_shape(binding))

    print(f'INPUT SHAPES:{input_shapes}, OUTPUT SHAPES:{output_shapes}')

    if not os.path.exists(output_dir):
        os.makedirs(output_dir, exist_ok=True)

    assert (os.path.abspath(output_dir) != os.path.abspath(image_path))

    class_scores_list = {i: [] for i in labels.values()}
    for img_name in os.listdir(image_path):

        image, image_orig, batch, scales = preprocess_image(
            os.path.join(image_path, img_name), preprocessor)
        if (image is None):
            continue
        st = time.time()

        # TRT INFERENCE
        inputs[0].host = batch

        trt_outputs = common.do_inference(
            context=context,
            bindings=bindings,
            inputs=inputs,
            outputs=outputs,
            stream=stream,
            batch_size=1,
        )

        regression, classification = [
            output.reshape(shape)
            for output, shape in zip(trt_outputs, output_shapes)
        ]

        if torch.cuda.is_available():
            regression = torch.from_numpy(regression).cuda()
            classification = torch.from_numpy(classification).cuda()
        else:
            regression = torch.from_numpy(regression)
            classification = torch.from_numpy(classification)

        scores, classification, transformed_anchors = postprocessor(
            batch, regression, classification)

        print('Elapsed time: {}'.format(time.time() - st))
        idxs = np.where(scores.cpu() > 0.01)

        for j in range(idxs[0].shape[0]):
            label_name = labels[int(classification[idxs[0][j]])]
            score = scores[j]
            class_scores_list[label_name].append(score.cpu().numpy())

    # Get quartile distribution of all the scores.
    for label_name, scores_list in class_scores_list.items():
        print(f'{label_name} class has mean_score: {np.mean(scores_list)}, '
              f'0.25:{np.quantile(scores_list, 0.25)}, '
              f'0.5:{np.quantile(scores_list, 0.5)},'
              f'0.75:{np.quantile(scores_list, 0.75)}')
def processFile(l):

    js_file_path = l[0]
    base_name = os.path.splitext(os.path.basename(js_file_path))[0]

    pid = int(multiprocessing.current_process().ident)

    temp_files = {
        'path_tmp': 'tmp_%d.js' % pid,
        'path_tmp_b': 'tmp_%d.b.js' % pid,
        'path_tmp_b_1': 'tmp_%d.b.1.js' % pid,
        'path_tmp_b_2': 'tmp_%d.b.2.js' % pid,
        'path_tmp_b_a': 'tmp_%d.b.a.js' % pid,
        'path_tmp_u': 'tmp_%d.u.js' % pid,
        'path_tmp_u_a': 'tmp_%d.u.a.js' % pid,
        'path_tmp_unugly': 'tmp_%d.n2p.js' % pid,
        'path_tmp_unugly_1': 'tmp_%d.n2p.1.js' % pid,
        'path_tmp_unugly_2': 'tmp_%d.n2p.2.js' % pid,
        'path_tmp_jsnice': 'tmp_%d.jsnice.js' % pid,
        'f2': 'tmp_%d.no_renaming.js' % pid,
        #                   'f3': 'tmp_%d.basic_renaming.js' % pid,
        #                   'f4': 'tmp_%d.hash_renaming.js' % pid,
        'f5': 'tmp_%d.hash_def_one_renaming.js' % pid,
        #                   'f6': 'tmp_%d.hash_def_two_renaming.js' % pid,
        'f7': 'tmp_%d.hash_def_one_renaming_fb.js' % pid,
        'path_orig': os.path.join(output_path, '%s.js' % base_name),
        'path_ugly': os.path.join(output_path, '%s.u.js' % base_name),
        'path_unugly': os.path.join(output_path, '%s.n2p.js' % base_name),
        'path_jsnice': os.path.join(output_path, '%s.jsnice.js' % base_name)
    }

    #     for strategy in ['js', 'lm.js', 'len.js', 'freqlen.js']:
    #         for renaming in ['no_renaming', 'hash_def_one_renaming']:
    #             temp_files['path_tmp_%s_%s' % (renaming, strategy)] = \
    #                     'tmp_%d.%s.%s' % (pid, renaming, strategy)

    candidates = []

    #     if True:
    try:

        # Strip comments, replace literals, etc
        try:
            prepro = Preprocessor(os.path.join(corpus_root, js_file_path))
            prepro.write_temp_file(temp_files['path_tmp'])
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Preprocessor fail')

        # Pass through beautifier to fix layout
        clear = Beautifier()
        ok = clear.run(temp_files['path_tmp'], temp_files['path_tmp_b'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Beautifier fail')

#         # Pass through beautifier to fix layout
#         clear = Beautifier()
#         ok = clear.run(temp_files['path_tmp'],
#                        temp_files['path_tmp_b_1'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Beautifier fail')
#
#         jsNiceBeautifier = JSNice(flags=['--no-types', '--no-rename'])
#
#         (ok, _out, _err) = jsNiceBeautifier.run(temp_files['path_tmp_b_1'],
#                                                 temp_files['path_tmp_b_2'])
#         if not ok:
#             cleanup(temp_files)
#             print js_file_path, _err
#             return (js_file_path, None, 'JSNice Beautifier fail')
#
#         ok = clear.run(temp_files['path_tmp_b_2'],
#                        temp_files['path_tmp_b'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Beautifier fail')
#
#
#         # Weird JSNice renamings despite --no-rename
#         try:
#             before = set([token for (token, token_type) in
#                           Lexer(temp_files['path_tmp_b_1']).tokenList
#                           if is_token_subtype(token_type, Token.Name)])
#             after = set([token for (token, token_type) in
#                           Lexer(temp_files['path_tmp_b']).tokenList
#                           if is_token_subtype(token_type, Token.Name)])
#
#             if not before == after:
#                 return (js_file_path, None, 'Weird JSNice renaming')
#
#         except:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Lexer fail')

# Minify
        ugly = Uglifier()
        ok = ugly.run(temp_files['path_tmp_b'], temp_files['path_tmp_u'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Uglifier fail')

        # Num tokens before vs after
        try:
            tok_clear = Lexer(temp_files['path_tmp_b']).tokenList
            tok_ugly = Lexer(temp_files['path_tmp_u']).tokenList
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Lexer fail')

        # For now only work with minified files that have
        # the same number of tokens as the originals
        if not len(tok_clear) == len(tok_ugly):
            cleanup(temp_files)
            return (js_file_path, None, 'Num tokens mismatch')

        # Align minified and clear files, in case the beautifier
        # did something weird
        try:
            aligner = Aligner()
            # This is already the baseline corpus, no (smart) renaming yet
            aligner.align(temp_files['path_tmp_b'], temp_files['path_tmp_u'])
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'Aligner fail')



        if open(temp_files['path_tmp_b']).read() == \
                open(temp_files['path_tmp_u']).read():
            cleanup(temp_files)
            return (js_file_path, None, 'Not minified')

        try:
            lex_ugly = Lexer(temp_files['path_tmp_u_a'])
            iBuilder_ugly = IndexBuilder(lex_ugly.tokenList)
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'IndexBuilder fail')

        ############################################################
        # From now on only work with path_tmp_b_a and path_tmp_u_a
        ############################################################

        # Store original and uglified versions
        ok = clear.run(temp_files['path_tmp_b_a'], temp_files['path_orig'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Beautifier fail')

        ok = clear.run(temp_files['path_tmp_u_a'], temp_files['path_ugly'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Beautifier fail')

        # Run the JSNice from http://www.nice2predict.org
        unuglifyJS = UnuglifyJS()
        (ok, _out, _err) = unuglifyJS.run(temp_files['path_tmp_u_a'],
                                          temp_files['path_tmp_unugly'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Nice2Predict fail')

        ok = clear.run(temp_files['path_tmp_unugly'],
                       temp_files['path_unugly'])
        if not ok:
            cleanup(temp_files)
            return (js_file_path, None, 'Beautifier fail')

#         ok = clear.run(temp_files['path_tmp_unugly'],
#                        temp_files['path_tmp_unugly_1'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Beautifier fail')
#
#         (ok, _out, _err) = jsNiceBeautifier.run(temp_files['path_tmp_unugly_1'],
#                                                 temp_files['path_tmp_unugly_2'])
#         if not ok:
#             cleanup(temp_files)
#             print js_file_path, _err
#             return (js_file_path, None, 'JSNice Beautifier fail')
#
#         ok = clear.run(temp_files['path_tmp_unugly_2'],
#                        temp_files['path_unugly'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Beautifier fail')

        try:
            lexer = Lexer(temp_files['path_unugly'])
            iBuilder = IndexBuilder(lexer.tokenList)
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'IndexBuilder fail')

        try:
            scopeAnalyst = ScopeAnalyst(
                os.path.join(os.path.dirname(os.path.realpath(__file__)),
                             temp_files['path_unugly']))
            nameOrigin = scopeAnalyst.nameOrigin
            isGlobal = scopeAnalyst.isGlobal

            for (name, def_scope) in nameOrigin.iterkeys():

                pos = scopeAnalyst.nameDefScope2pos[(name, def_scope)]
                (lin, col) = iBuilder.revFlatMat[pos]
                (tok_lin, tok_col) = iBuilder.revTokMap[(lin, col)]

                candidates.append(('Nice2Predict', def_scope, tok_lin, tok_col,
                                   isGlobal.get((name, pos),
                                                True), name, '', ''))
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'ScopeAnalyst fail')

#         # Run the JSNice from http://www.jsnice.org
#         jsNice = JSNice()
#         (ok, _out, _err) = jsNice.run(temp_files['path_tmp_u_a'],
#                                       temp_files['path_tmp_jsnice'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'JSNice fail')
#
#         ok = clear.run(temp_files['path_tmp_jsnice'],
#                        temp_files['path_jsnice'])
#         if not ok:
#             cleanup(temp_files)
#             return (js_file_path, None, 'Beautifier fail')
#
#         try:
#             lexer = Lexer(temp_files['path_jsnice'])
#             iBuilder = IndexBuilder(lexer.tokenList)
#         except:
#             cleanup(temp_files)
#             return (js_file_path, None, 'IndexBuilder fail')
#
#         try:
#             scopeAnalyst = ScopeAnalyst(os.path.join(
#                                  os.path.dirname(os.path.realpath(__file__)),
#                                  temp_files['path_jsnice']))
#             nameOrigin = scopeAnalyst.nameOrigin
#             isGlobal = scopeAnalyst.isGlobal
#
#             for (name, def_scope) in nameOrigin.iterkeys():
#
#                 pos = scopeAnalyst.nameDefScope2pos[(name, def_scope)]
#                 (lin,col) = iBuilder.revFlatMat[pos]
#                 (tok_lin,tok_col) = iBuilder.revTokMap[(lin,col)]
#
#                 candidates.append(('JSNice', def_scope,
#                                    tok_lin, tok_col,
#                                    isGlobal.get((name, pos), True),
#                                    name, '',''))
#         except:
#             cleanup(temp_files)
#             return (js_file_path, None, 'ScopeAnalyst fail')

# Compute scoping: name2scope is a dictionary where keys
# are (name, start_index) tuples and values are scope identifiers.
# Note: start_index is a flat (unidimensional) index,
# not a (line_chr_idx, col_chr_idx) index.
        try:
            scopeAnalyst = ScopeAnalyst(
                os.path.join(os.path.dirname(os.path.realpath(__file__)),
                             temp_files['path_tmp_u_a']))
        except:
            cleanup(temp_files)
            return (js_file_path, None, 'ScopeAnalyst fail')

        # Baseline translation: No renaming, no scoping
        no_renaming = []
        for _line_idx, line in enumerate(iBuilder_ugly.tokens):
            no_renaming.append(' '.join([t for (_tt, t) in line]) + "\n")

        with open(temp_files['f2'], 'w') as f_no_renaming:
            f_no_renaming.writelines(no_renaming)

        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
                           'train.no_renaming', 'tuning', 'moses.ini'))
        (_moses_ok, translation_no_renaming,
         _err) = moses.run(temp_files['f2'])

        nc = processTranslationUnscoped(translation_no_renaming, iBuilder_ugly,
                                        lm_path, temp_files['f2'], output_path,
                                        base_name)
        if nc:
            candidates += nc

#  translation, iBuilder, lm_path,
#                                f_path, output_path, base_name
# Default translation: No renaming
#         no_renaming = []
#         for _line_idx, line in enumerate(iBuilder_ugly.tokens):
#             no_renaming.append(' '.join([t for (_tt,t) in line]) + "\n")
#
#         with open(temp_files['f2'], 'w') as f_no_renaming:
#             f_no_renaming.writelines(no_renaming)
#
#         moses = MosesDecoder(ini_path=os.path.join(ini_path, \
#                            'train.no_renaming', 'tuning', 'moses.ini'))
#         (_moses_ok, translation, _err) = moses.run(temp_files['f2'])

        nc = processTranslationScoped(translation_no_renaming, iBuilder_ugly,
                                      scopeAnalyst, lm_path, temp_files['f2'],
                                      output_path, base_name)
        if nc:
            candidates += nc

        # More complicated renaming: collect the context around
        # each name (global variables, API calls, punctuation)
        # and build a hash of the concatenation.
        hash_def_one_renaming = renameUsingHashDefLine(scopeAnalyst,
                                                       iBuilder_ugly,
                                                       twoLines=False,
                                                       debug=False)
        with open(temp_files['f5'], 'w') as f_hash_def_one_renaming:
            f_hash_def_one_renaming.writelines(hash_def_one_renaming)

#        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
#                           'train.hash_def_one_renaming', 'tuning', 'moses.ini'))
#        (_moses_ok,
#            translation_hash_renaming,
#            _err) = moses.run(temp_files['f5'])

        mosesParams = {}
        mosesParams["text"] = hash_def_one_renaming  #lex_ugly.collapsedText
        #mosesParams["align"] = "true"
        #mosesParams["report-all-factors"] = "true"

        mresults = proxy.translate(
            mosesParams)  # __request("translate", mosesParams)
        rawText = Postprocessor(mresults["nbest"])
        translation_hash_renaming = rawText.getProcessedOutput()

        nc = processTranslationScoped(translation_hash_renaming, iBuilder_ugly,
                                      scopeAnalyst, lm_path, temp_files['f5'],
                                      output_path, base_name)
        if nc:
            candidates += nc


#        nc = processTranslationScopedFallback(translation_hash_renaming,
#                                              translation_no_renaming,
#                                              iBuilder_ugly,
#                                              scopeAnalyst,
#                                              lm_path,
#                                              temp_files['f7'],
#                                              output_path,
#                                              base_name)
#        if nc:
#            candidates += nc

        cleanup(temp_files)
        cleanupRenamed(pid)
        return (js_file_path, 'OK', candidates)

    except Exception, e:
        cleanup(temp_files)
        cleanupRenamed(pid)
        return (js_file_path, None, str(e).replace("\n", ""))
示例#7
0
def processFile(l):
    
    def localCleanup(output_path, base_names):
        for base_name in base_names:
            tryRemove(os.path.join(output_path, base_name))
    
    js_file_path = l[0]
    base_name = os.path.splitext(os.path.basename(js_file_path))[0]
    
    pid = int(multiprocessing.current_process().ident)

    candidates = []
    
    try:
#     if True:
        # Temp files to be created during processing
        path_tmp = 'tmp_%d.js' % (pid)
        path_tmp_b = 'tmp_%d.b.js' % (pid)
        path_tmp_b_a = 'tmp_%d.b.a.js' % (pid)
        path_tmp_u = 'tmp_%d.u.js' % (pid)
        path_tmp_u_a = 'tmp_%d.u.a.js' % (pid)
        path_tmp_unugly = 'tmp_%d.n2p.js' % (pid)
        path_tmp_jsnice = 'tmp_%d.jsnice.js' % (pid)
        
        f2 = 'tmp_%d.no_renaming.js' % (pid)
        f3 = 'tmp_%d.basic_renaming.js' % (pid)
        f4 = 'tmp_%d.hash_renaming.js' % (pid)
        f5 = 'tmp_%d.hash_def_one_renaming.js' % (pid)
        f6 = 'tmp_%d.hash_def_two_renaming.js' % (pid)
        
        path_orig = '%s.js' % (base_name)
        path_ugly = '%s.u.js' % (base_name)
        path_unugly = '%s.n2p.js' % (base_name)
        path_jsnice = '%s.jsnice.js' % (base_name)
        
        # Strip comments, replace literals, etc
        try:
            prepro = Preprocessor(os.path.join(corpus_root, js_file_path))
            prepro.write_temp_file(path_tmp)
        except:
            cleanup(pid)
            return (js_file_path, None, 'Preprocessor fail')
        
        # Pass through beautifier to fix layout
        clear = Beautifier()
        ok = clear.run(path_tmp, path_tmp_b+'.tmp1')
        if not ok:
            cleanup(pid)
            return (js_file_path, None, 'Beautifier 1 fail')
         
        jsNiceBeautifier = JSNice(flags=['--no-types', '--no-rename'])
        
        (ok, _out, _err) = jsNiceBeautifier.run(path_tmp_b+'.tmp1', path_tmp_b+'.tmp2')
        if not ok:
            cleanup(pid)
            return (js_file_path, None, 'JSNice Beautifier 1 fail')

        ok = clear.run(path_tmp_b+'.tmp2', path_tmp_b)
        if not ok:
            cleanup(pid)
            return (js_file_path, None, 'Beautifier 1 fail')
         
        # Minify
        ugly = Uglifier()
        ok = ugly.run(path_tmp_b, path_tmp_u)
        
        if not ok:
            cleanup(pid)
            return (js_file_path, None, 'Uglifier fail')
        
        # Num tokens before vs after
        try:
            tok_clear = Lexer(path_tmp_b).tokenList
            tok_ugly = Lexer(path_tmp_u).tokenList
        except:
            cleanup(pid)
            return (js_file_path, None, 'Lexer fail')
       
        # For now only work with minified files that have
        # the same number of tokens as the originals
        if not len(tok_clear) == len(tok_ugly):
            cleanup(pid)
            return (js_file_path, None, 'Num tokens mismatch')
        
        # Align minified and clear files, in case the beautifier 
        # did something weird
        try:
            aligner = Aligner()
            # This is already the baseline corpus, no (smart) renaming yet
            aligner.align(path_tmp_b, path_tmp_u)
        except:
            cleanup(pid)
            return (js_file_path, None, 'Aligner fail')
        
        try:
#             iBuilder_clear = IndexBuilder(Lexer(path_tmp_b_a).tokenList)
            iBuilder_ugly = IndexBuilder(Lexer(path_tmp_u_a).tokenList)
        except:
            cleanup(pid)
            return (js_file_path, None, 'IndexBuilder fail')
        
        
        # Store original and uglified versions
        ok = clear.run(path_tmp_u_a, os.path.join(output_path, path_ugly))
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly])
            return (js_file_path, None, 'Beautifier 2 fail')
        
        ok = clear.run(path_tmp_b_a, os.path.join(output_path, path_orig))
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig])
            return (js_file_path, None, 'Beautifier 3 fail')
        
        
        # Run the JSNice from http://www.nice2predict.org
        unuglifyJS = UnuglifyJS()
        (ok, _out, _err) = unuglifyJS.run(path_tmp_b_a, path_tmp_unugly)
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig])
            return (js_file_path, None, 'Nice2Predict fail')
        
        ok = clear.run(path_tmp_unugly, path_tmp_unugly+'.tmp1')
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, path_unugly])
            return (js_file_path, None, 'Beautifier 4 fail')
        
        (ok, _out, _err) = jsNiceBeautifier.run(path_tmp_unugly+'.tmp1', path_tmp_unugly+'.tmp2')
        if not ok:
            cleanup(pid)
            return (js_file_path, None, 'JSNice Beautifier 2 fail')
    
        ok = clear.run(path_tmp_unugly+'.tmp2', os.path.join(output_path, path_unugly))
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, path_unugly])
            return (js_file_path, None, 'Beautifier 4 fail')

        try:
            scopeAnalyst = ScopeAnalyst(os.path.join(
                                 os.path.dirname(os.path.realpath(__file__)), 
                                 path_tmp_unugly))
            nameOrigin = scopeAnalyst.nameOrigin
            for (name, def_scope) in nameOrigin.iterkeys():
                candidates.append(('Nice2Predict', def_scope, name, '', ''))
        except:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, path_unugly])
            return (js_file_path, None, 'ScopeAnalyst fail')
    
    
    
        # Run the JSNice from http://www.jsnice.org
        jsNice = JSNice()
        (ok, _out, _err) = jsNice.run(path_tmp_b_a, path_tmp_jsnice)
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, path_unugly])
            return (js_file_path, None, 'JSNice fail')

        ok = clear.run(path_tmp_jsnice, os.path.join(output_path, path_jsnice))
        if not ok:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, \
                                       path_unugly, path_jsnice])
            return (js_file_path, None, 'Beautifier 5 fail')
        
        try:
            scopeAnalyst = ScopeAnalyst(os.path.join(
                                 os.path.dirname(os.path.realpath(__file__)), 
                                 path_tmp_jsnice))
            nameOrigin = scopeAnalyst.nameOrigin
            for (name, def_scope) in nameOrigin.iterkeys():
                candidates.append(('JSNice', def_scope, name, '', ''))
        except:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, \
                                       path_unugly, path_jsnice])
            return (js_file_path, None, 'ScopeAnalyst fail')
        
        
        
        # Compute scoping: name2scope is a dictionary where keys
        # are (name, start_index) tuples and values are scope identifiers. 
        # Note: start_index is a flat (unidimensional) index, 
        # not a (line_chr_idx, col_chr_idx) index.
        try:
            scopeAnalyst = ScopeAnalyst(os.path.join(
                                 os.path.dirname(os.path.realpath(__file__)), 
                                 path_tmp_u_a))
            _name2defScope = scopeAnalyst.resolve_scope()
            _isGlobal = scopeAnalyst.isGlobal
            _name2useScope = scopeAnalyst.resolve_use_scope()
        except:
            cleanup(pid)
            localCleanup(output_path, [path_ugly, path_orig, \
                                       path_unugly, path_jsnice])
            return (js_file_path, None, 'ScopeAnalyst fail')
        
        
        no_renaming = []
        for _line_idx, line in enumerate(iBuilder_ugly.tokens):
            no_renaming.append(' '.join([t for (_tt,t) in line]) + "\n")
        
        with open(f2, 'w') as f_no_renaming:
            f_no_renaming.writelines(no_renaming)
        
        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
                           'train.no_renaming', 'tuning', 'moses.ini'))
        (_moses_ok, translation, _err) = moses.run(f2)

        nc = processTranslation(translation, iBuilder_ugly, 
                       scopeAnalyst, lm_path, f2,
                       output_path, base_name, clear)
        if nc:
            candidates += nc
        
        
        # Simple renaming: disambiguate overloaded names using scope id
        basic_renaming = renameUsingScopeId(scopeAnalyst, iBuilder_ugly)
        with open(f3, 'w') as f_basic_renaming:
            f_basic_renaming.writelines(basic_renaming)
        
        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
                           'train.basic_renaming', 'tuning', 'moses.ini'))
        (_moses_ok, translation, _err) = moses.run(f3)
        nc = processTranslation(translation, iBuilder_ugly, 
                       scopeAnalyst, lm_path, f3,
                       output_path, base_name, clear)
        if nc:
            candidates += nc
            
        
        # More complicated renaming: collect the context around  
        # each name (global variables, API calls, punctuation)
        # and build a hash of the concatenation.
        hash_renaming = renameUsingHashAllPrec(scopeAnalyst, 
                                               iBuilder_ugly,
                                               debug=False)
#         print hash_renaming
        with open(f4, 'w') as f_hash_renaming:
            f_hash_renaming.writelines(hash_renaming)
        
        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
                           'train.hash_renaming', 'tuning', 'moses.ini'))
        (_moses_ok, translation, _err) = moses.run(f4)
        
        nc = processTranslation(translation, iBuilder_ugly, 
                       scopeAnalyst, lm_path, f4,
                       output_path, base_name, clear)
        if nc:
            candidates += nc
        
        hash_def_one_renaming = renameUsingHashDefLine(scopeAnalyst, 
                                                   iBuilder_ugly, 
                                                   twoLines=False,
                                                   debug=False)
        with open(f5, 'w') as f_hash_def_one_renaming:
            f_hash_def_one_renaming.writelines(hash_def_one_renaming)

        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
                           'train.hash_def_one_renaming', 'tuning', 'moses.ini'))
        (_moses_ok, translation, _err) = moses.run(f5)
        
        nc = processTranslation(translation, iBuilder_ugly, 
                       scopeAnalyst, lm_path, f5,
                       output_path, base_name, clear)
        if nc:
            candidates += nc
            

        hash_def_two_renaming = renameUsingHashDefLine(scopeAnalyst, 
                                                   iBuilder_ugly, 
                                                   twoLines=True,
                                                   debug=False)
        with open(f6, 'w') as f_hash_def_two_renaming: 
            f_hash_def_two_renaming.writelines(hash_def_two_renaming)
        
        moses = MosesDecoder(ini_path=os.path.join(ini_path, \
                           'train.hash_def_two_renaming', 'tuning', 'moses.ini'))
        (_moses_ok, translation, _err) = moses.run(f6)
        
        nc = processTranslation(translation, iBuilder_ugly, 
                       scopeAnalyst, lm_path, f6,
                       output_path, base_name, clear)
        if nc:
            candidates += nc
            
        
        cleanup(pid)
        cleanupRenamed(pid)
        return (js_file_path, 'OK', candidates)


    except Exception, e:
        cleanup(pid)
        cleanupRenamed(pid)
        return (js_file_path, None, str(e).replace("\n", ""))
示例#8
0
def detect_images(image_path, model_path, configfile, output_dir):
    # Load model
    configs = configparser.ConfigParser()
    configs.read(configfile)

    try:
        input_shape = json.loads(configs['MODEL']['input_shape'])
        try:
            ratios = json.loads(configs['MODEL']['ratios'])
            scales = json.loads(configs['MODEL']['scales'])
        except Exception as e:
            print(e)
            print('USING DEFAULT RATIOS AND SCALES')
            ratios = None
            scales = None

    except:
        print("CONFIG FILE DOES NOT HAVE INPUT_SHAPE")
        sys.exit()

    sess, output_names, input_names = load_onnx_model(model_path)

    preprocessor = Preprocessor(input_width=input_shape[2],
                                input_height=input_shape[1],
                                mean=np.array([[[0.485, 0.456, 0.406]]]),
                                std=np.array([[[0.229, 0.224, 0.225]]]))
    postprocessor = PostProcessor(ratios=ratios, scales=scales)

    # Get labelmap
    labels = load_classes_from_configfile(configfile)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir, exist_ok=True)

    assert (os.path.abspath(output_dir) != os.path.abspath(image_path))

    for img_name in os.listdir(image_path):

        image = cv2.imread(os.path.join(image_path, img_name))
        if image is None:
            continue

        image_orig = image.copy()
        image, scales = preprocessor(image)
        image = np.expand_dims(image, 0)
        image = np.transpose(image, (0, 3, 1, 2))
        image = image.astype(np.float32)
        batch = image.copy()
        st = time.time()
        regression, classification = sess.run(output_names,
                                              {input_names[0]: batch})
        if torch.cuda.is_available():
            regression = torch.from_numpy(regression).cuda()
            classification = torch.from_numpy(classification).cuda()
        else:
            regression = torch.from_numpy(regression)
            classification = torch.from_numpy(classification)

        scores, classification, transformed_anchors = postprocessor(
            batch, regression, classification)

        print('Elapsed time: {}'.format(time.time() - st))
        idxs = np.where(scores.cpu() > 0.35)

        for j in range(idxs[0].shape[0]):
            bbox = transformed_anchors[idxs[0][j], :]

            x1 = int(bbox[0] / scales[0])
            y1 = int(bbox[1] / scales[1])
            x2 = int(bbox[2] / scales[0])
            y2 = int(bbox[3] / scales[1])
            label_name = labels[int(classification[idxs[0][j]])]
            score = scores[j]
            caption = '{} {:.3f}'.format(label_name, score)
            draw_caption(image_orig, (x1, y1, x2, y2), caption)
            cv2.rectangle(image_orig, (x1, y1), (x2, y2),
                          color=(0, 0, 255),
                          thickness=2)

        cv2.imwrite(os.path.join(output_dir, img_name), image_orig)
示例#9
0
                  out_file_path):
    
    js_tmp = open(out_file_path, 'w')
    js_tmp.write('\n'.join([' '.join([token for (_token_type, token) in line]) 
                            for line in lines]).encode('utf8'))
    js_tmp.write('\n')
    js_tmp.close()


    
input_file = os.path.abspath(sys.argv[1])
output_file = os.path.abspath(sys.argv[2])
mode = int(sys.argv[3])


prepro = Preprocessor(input_file)
prepro.write_temp_file('tmp.js')

clear = Beautifier()
ok = clear.run('tmp.js', 
               'tmp.b.js')
  
lexer = Lexer('tmp.b.js')
iBuilder = IndexBuilder(lexer.tokenList)

scopeAnalyst = ScopeAnalyst(os.path.join(
                         os.path.dirname(os.path.realpath(__file__)), 
                         'tmp.b.js'))

hash_renaming = renameUsingHashDefLine(scopeAnalyst, 
                                   iBuilder, 
示例#10
0
@author: caseycas
'''

import xmlrpclib
from tools import Preprocessor
from tools.postprocessor import Postprocessor

proxy = xmlrpclib.ServerProxy("http://godeep.cs.ucdavis.edu:8080/RPC2")

mosesParams = {}

input_path = "/Users/caseycas/jsnaughty/data/js_files.sample/98440.js"

# Strip comments, replace literals, etc
try:
    prepro = Preprocessor(input_path)
    #prepro.write_temp_file(output_path)
except:
    print("Preprocessor failed")
    quit()
    
#print(prepro.__str__())
#quit()

#mosesParams["text"] = "var m = [ ]"
mosesParams["text"] = prepro.__str__()
mosesParams["align"] = "true"
mosesParams["report-all-factors"] = "true"


results = proxy.translate(mosesParams)# __request("translate", mosesParams)