示例#1
0
def run(bs, path, lr, ks, num_layer):
    fold=1
    for X_train, Y_train, X_val, Y_val, val_cat in zip(training_data,
                                                       training_label,
                                                       validation_data,
                                                       validation_label,
                                                       validation_cate_label):
        print("Fold "+str(fold))
        model = tools.create_model(lr, bs, ks, num_layer)
        inner_path = path+"/fold_"+str(fold)
        if not os.path.exists(inner_path):
            os.makedirs(inner_path)
        
        early_stop = EarlyStopping(patience=20)
        history = model.fit(x = X_train, 
                            y = Y_train,
                            epochs=80,
                            validation_data=(X_val, Y_val),
                            callbacks=[early_stop],
                            batch_size=bs, 
                            verbose=0)
        evaluation = model.evaluate(x = X_val, y = Y_val)
        validation_prediction = model.predict_classes(X_val, batch_size=bs)
        score = f1_score(val_cat, validation_prediction, average=None)
        
        tools.show_plot(inner_path, history)
        tools.write_file(inner_path+"/readme.txt", evaluation, score, model)
        fold = fold + 1
        del model
示例#2
0
        fold = fold + 1
        del model

## main()
base_path = "5_fold_10/"
if not os.path.exists(base_path):
    os.makedirs(base_path)
# index=1
# with open(base_path+"Cartesian_product.txt", "w+") as writer:
#     for ks, num_layer, bs, lr in itertools.product(kernel_size, num_layers, batch_size, learning_rate):
#         writer.write(str(index)+":"+"\n")
#         writer.write('ks={}, num_layer={}, bs={}, lr={}'.format(ks, num_layer, bs, lr)+"\n")
#         index = index + 1
#     del index

index=41
for ks, num_layer, bs, lr in itertools.product(kernel_size, num_layers, batch_size, learning_rate):
    print("Index "+str(index))
    path = base_path+str(index)
    if not os.path.exists(path):
        os.makedirs(path)
    
    model = tools.create_model(lr, bs, ks, num_layer)
    if model:
        run(bs, path, lr, ks, num_layer)
    else:
        overflow_model = overflow_model + 1
    del model
    index = index + 1

print("Training finished! Overflow model: ", overflow_model)