示例#1
0
 def test_empty(self):
     """
     Test the ability to handle None objects as input
     """
     self.setup()
     self.to = topopy.TopologicalObject()
     self.to.build(None, None)
示例#2
0
    def test_debug(self):
        """
        Test the debugging output of the TopologicalObject
        """
        self.setup()
        test_file = "to_test_debug.txt"
        sys.stdout = open(test_file, "w")

        self.to = topopy.TopologicalObject(debug=True, graph=self.graph)
        self.to.build(self.X, self.Y)
        sys.stdout.close()

        lines = ["Graph Preparation:"]

        with open(test_file, "r") as fp:
            debug_output = fp.read()
            for line in lines:
                self.assertIn(line, debug_output)

        os.remove(test_file)
        # Restore stdout
        sys.stdout = sys.__stdout__
示例#3
0
    def setup(self):
        """
        Setup function will create a fixed point set and parameter
        settings for testing different aspects of this library.
        """
        self.X = generate_test_grid_2d(10)
        self.Y = gerber(self.X)
        self.graph = ngl.EmptyRegionGraph(max_neighbors=10)

        self.norm_x = {}
        scaler = sklearn.preprocessing.MinMaxScaler()
        self.norm_x["feature"] = scaler.fit_transform(np.atleast_2d(self.X))
        self.norm_x["zscore"] = sklearn.preprocessing.scale(
            self.X, axis=0, with_mean=True, with_std=True, copy=True
        )
        self.norm_x["none"] = self.X

        # Methods covered here:
        # __init__
        # build
        # __set_data
        self.to = topopy.TopologicalObject(debug=False, graph=self.graph)
        self.to.build(self.X, self.Y)
示例#4
0
    def test_aggregation(self):
        # Since the default function can change, here we will only test
        # that the correct number of each array is reported
        X = np.ones((11, 2))
        X[10] = [0, 0]
        Y = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100])

        warnings.filterwarnings("ignore")

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y)
        self.assertEqual(
            2,
            len(x),
            "aggregate_duplicates should return a list of "
            "unique items in X.",
        )
        self.assertEqual(
            2,
            len(y),
            "aggregate_duplicates should return the aggregated "
            "values of Y for each unique item in X.",
        )

        # Next, we will test each of the string aggregation function
        # names on scalar Y values
        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "min")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [100, 0])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "max")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [100, 9])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "mean")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [100, 4.5])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "average")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [100, 4.5])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "median")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [100, 4.5])

        # Next, we will test each of the string aggregation function
        # names on vector Y values
        Y = np.array(
            [
                [0, 9],
                [1, 8],
                [2, 7],
                [3, 6],
                [4, 5],
                [5, 4],
                [6, 3],
                [7, 2],
                [8, 1],
                [9, 0],
                [100, 0],
            ]
        )

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "min")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [0, 0]])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "max")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [9, 9]])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "mean")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [4.5, 4.5]])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "median")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [4.5, 4.5]])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "first")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [0, 9]])

        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y, "last")
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [9, 0]])

        # Testing custom callable aggregator
        x, y = topopy.TopologicalObject.aggregate_duplicates(
            X, Y, lambda x: x[0]
        )
        self.assertListEqual(x.tolist(), [[0, 0], [1, 1]])
        self.assertListEqual(y.tolist(), [[100, 0], [0, 9]])

        warnings.filterwarnings("always")
        # Testing an invalid aggregator
        with warnings.catch_warnings(record=True) as w:
            x, y = topopy.TopologicalObject.aggregate_duplicates(
                X, Y, "invalid"
            )

            self.assertTrue(issubclass(w[-1].category, UserWarning))
            self.assertEqual(
                'Aggregator "invalid" not understood. Skipping sample '
                'aggregation.',
                str(w[-1].message),
            )

            self.assertListEqual(x.tolist(), X.tolist())
            self.assertListEqual(y.tolist(), Y.tolist())

        # Testing aggregator on non-duplicate data
        X = np.array([[0, 0], [0, 1]])
        Y = np.array([0, 1])
        x, y = topopy.TopologicalObject.aggregate_duplicates(X, Y)
        self.assertListEqual(x.tolist(), X.tolist())
        self.assertListEqual(y.tolist(), Y.tolist())

        warnings.filterwarnings("ignore")
        # Testing use of the aggregator in the check_duplicates function
        X = np.ones((11, 2))
        X[10] = [0, 0]
        Y = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100])

        to = topopy.TopologicalObject()
        self.assertRaises(ValueError, to.build, **{"X": X, "Y": Y})
        graph = ngl.EmptyRegionGraph(max_neighbors=10)
        to = topopy.TopologicalObject(aggregator="mean", graph=graph)
        to.build(X, Y)
        warnings.filterwarnings("always")
示例#5
0
    def test_get_normed_x(self):
        """
        Tests get_normed_x in several different contexts:
            Single Element extraction
            Single Column extraction
            Single Row extraction
            Multiple row extraction
            Multiple column extraction
            Full data extraction
        """
        self.setup()

        for norm, X in self.norm_x.items():
            to = topopy.TopologicalObject(normalization=norm, graph=self.graph)
            to.build(self.X, self.Y)

            # Test single column extraction
            for col in range(X.shape[1]):
                column_values = to.get_normed_x(cols=col)
                np.testing.assert_array_equal(
                    X[:, col],
                    column_values,
                    "get_normed_x should be able "
                    + "to access a full column of "
                    + "the input data.",
                )

            # Test single row extraction
            for row in range(X.shape[0]):
                row_values = to.get_normed_x(row).flatten()
                np.testing.assert_array_equal(
                    X[row, :],
                    row_values,
                    "get_normed_x should be able "
                    + "to access a full row of the "
                    + "input data.",
                )
                # Test single element extraction
                for col in range(X.shape[1]):
                    self.assertEqual(
                        X[row, col],
                        to.get_normed_x(row, col),
                        "get_normed_x should be able to access "
                        + "a single element of the input data.",
                    )

            # Multiple row extraction
            row_values = to.get_normed_x(list(range(X.shape[0])), 0)
            np.testing.assert_array_equal(
                X[:, 0],
                row_values,
                "get_normed_x should be able to "
                + "access multiple rows of the "
                + "input data.",
            )

            # Multiple column extraction
            col_values = to.get_normed_x(0, list(range(X.shape[1]))).flatten()
            np.testing.assert_array_equal(
                X[0, :],
                col_values,
                "get_normed_x should be able to "
                + "access multiple columns of the "
                + "input data.",
            )

            # Full data extraction
            np.testing.assert_array_equal(
                X,
                to.get_normed_x(),
                "get_normed_x should be able to "
                + "access the entire input data.",
            )