def test_multi_simulation_data_merge(self):
        # global_sim_df = pd.DataFrame()
        # global_task_df = pd.DataFrame()

        for algorithm in ['heft', 'fcfs']:
            env = simpy.Environment()
            simulation = Simulation(
                env,
                CONFIG,
                self.instrument,
                planning_algorithm=algorithm,
                planning_model=SHADOWPlanning(algorithm),
                scheduling=DynamicAlgorithmFromPlan,
                delay=None,
                timestamp='unittest',
                hdf5_path='test/simulation_data/test_hdf5.h5',
                to_file=True,
                delimiters=f'{algorithm}')
            simulation.start()
        self.assertTrue(os.path.exists('test/simulation_data/test_hdf5.h5'))
        heft_key = '/dunittest/heft/heft_single_observation_simulation/sim/'
        fcfs_key = '/dunittest/fcfs/heft_single_observation_simulation/sim/'
        heft_sim = pd.read_hdf('test/simulation_data/test_hdf5.h5',
                               key=heft_key)
        self.assertEqual(120, len(heft_sim))
        self.assertEqual(3, heft_sim.iloc[-1]['available_resources'])
示例#2
0
 def test_run_batchmodel(self):
     simulation = Simulation(self.env,
                             CONFIG,
                             Telescope,
                             planning_model=BatchPlanning('batch'),
                             planning_algorithm='batch',
                             scheduling=BatchProcessing,
                             delay=None,
                             timestamp=f'{cwd}/test/data/output/{0}')
     sim, task = simulation.start()
     self.assertGreater(len(sim), 0)
示例#3
0
 def setUp(self) -> None:
     env = simpy.Environment()
     self.simulation = Simulation(
         env,
         LARGE_CONFIG,
         Telescope,
         planning_algorithm='heft',
         planning_model=SHADOWPlanning('heft'),
         scheduling=DynamicAlgorithmFromPlan,
         delay=None,
         timestamp=f'test/basic-workflow-data/output/{0}')
示例#4
0
    def __init__(self, machine_configs, task_configs, algorithm, event_file):
        self.env = simpy.Environment()
        cluster = Cluster()
        cluster.add_machines(machine_configs)

        task_broker = Broker(self.env, task_configs)

        scheduler = Scheduler(self.env, algorithm)

        self.simulation = Simulation(self.env, cluster, task_broker, scheduler,
                                     event_file)
示例#5
0
 def setUp(self) -> None:
     self.env = simpy.Environment()
     self.simulation = Simulation(
         self.env,
         BASIC_CONFIG,
         Telescope,
         planning_algorithm='heft',
         planning_model=SHADOWPlanning('heft'),
         scheduling=DynamicAlgorithmFromPlan,
         delay=None,
         timestamp=SIM_TIMESTAMP
     )
示例#6
0
 def setUp(self) -> None:
     event_file = EVENT_FILE
     env = simpy.Environment()
     planning_algorithm = 'heft'
     scheduling_algorithm = FifoAlgorithm()
     self.simulation = Simulation(env,
                                  TELESCOPE_CONFIG,
                                  CLUSTER_CONFIG,
                                  BUFFER_CONFIG,
                                  planning_algorithm,
                                  scheduling_algorithm,
                                  EVENT_FILE,
                                  visualisation=False)
示例#7
0
class Episode(object):
    def __init__(self, machine_configs, task_configs, algorithm, event_file):
        self.env = simpy.Environment()
        cluster = Cluster()
        cluster.add_machines(machine_configs)

        task_broker = Broker(self.env, task_configs)

        scheduler = Scheduler(self.env, algorithm)

        self.simulation = Simulation(self.env, cluster, task_broker, scheduler,
                                     event_file)

    def run(self):
        self.simulation.start()
        self.env.run()
def run_simulation(cfg, timestamp):
    """
    Given the specified, construct the simulation object and run it

    """
    env = simpy.Environment()
    simulation = Simulation(env=env,
                            config=cfg,
                            instrument=Telescope,
                            planning_algorithm='batch',
                            planning_model=BatchPlanning('batch'),
                            scheduling=BatchProcessing,
                            delay=None,
                            timestamp=timestamp,
                            to_file=True)
    sim, tasks = simulation.start()
    return sim, tasks
示例#9
0
class TestSimulationRuntime(unittest.TestCase):
    def setUp(self) -> None:
        event_file = EVENT_FILE
        env = simpy.Environment()
        planning_algorithm = 'heft'
        scheduling_algorithm = FifoAlgorithm()
        self.simulation = Simulation(env,
                                     TELESCOPE_CONFIG,
                                     CLUSTER_CONFIG,
                                     BUFFER_CONFIG,
                                     planning_algorithm,
                                     scheduling_algorithm,
                                     EVENT_FILE,
                                     visualisation=False)

    def testLimitedRuntime(self):
        self.simulation.start(runtime=60)
示例#10
0
 def testBasicConfig(self):
     simulation = Simulation(self.env,
                             CONFIG,
                             self.instrument,
                             planning_model=SHADOWPlanning('heft'),
                             planning_algorithm='heft',
                             scheduling=DynamicAlgorithmFromPlan,
                             timestamp=self.timestamp)
     self.assertTrue(36, simulation.instrument.total_arrays)
示例#11
0
    def test_simulation_produces_file(self):
        ts = f'{datetime.datetime(2021,1,1).strftime("%y_%m_%d_%H_%M_%S")}'
        simulation = Simulation(self.env,
                                CONFIG,
                                Telescope,
                                planning_model=SHADOWPlanning('heft'),
                                planning_algorithm='heft',
                                scheduling=DynamicAlgorithmFromPlan,
                                delay=None,
                                timestamp=ts,
                                to_file=True,
                                hdf5_path=self.output)

        simulation.start(runtime=60)
        self.assertTrue(os.path.exists(self.output))

        store = pd.HDFStore(self.output)

        store[f'd{ts}/standard_simulation/sim']
示例#12
0
 def testBasicConfig(self):
     simulation = Simulation(self.env,
                             TELESCOPE_CONFIG,
                             CLUSTER_CONFIG,
                             BUFFER_CONFIG,
                             self.planning_algorithm,
                             self.scheduling_algorithm,
                             EVENT_FILE,
                             visualisation=False)
     self.assertTrue(36, simulation.telescope.total_arrays)
 def setUp(self) -> None:
     """
     Basic simulation using a single observation + heft workflow +
     homogenous system configuration.
     Returns
     -------
     """
     env = simpy.Environment()
     self.instrument = Telescope
     self.simulation = Simulation(
         env=env,
         config=CONFIG,
         instrument=self.instrument,
         planning_algorithm='heft',
         planning_model=SHADOWPlanning('heft'),
         scheduling=DynamicAlgorithmFromPlan,
         delay=None,
         timestamp='unittest',
         to_file=True,
         hdf5_path='test/simulation_data/test_hdf5.h5',
         delimiters=f'test/')
 def test_simulation_nofile_option(self):
     simulation = Simulation(
         self.env,
         CONFIG,
         self.instrument,
         planning_algorithm='heft',
         planning_model=SHADOWPlanning('heft'),
         scheduling=DynamicAlgorithmFromPlan,
         delay=None,
         timestamp=None,
     )
     simdf, taskdf = simulation.start()
     self.assertEqual(120, len(simdf))
     self.env = simpy.Environment()
     simulation = Simulation(
         self.env,
         CONFIG,
         self.instrument,
         planning_algorithm='fcfs',
         planning_model=SHADOWPlanning('fcfs'),
         scheduling=DynamicAlgorithmFromPlan,
         delay=None,
         timestamp=None,
         # delimiters=f'test/{algorithm}'
     )
     simdf, taskdf = simulation.start()
     self.assertEqual(128, len(simdf))
示例#15
0
class TestSimulationLargeExperiment(unittest.TestCase):
    def setUp(self) -> None:
        env = simpy.Environment()
        self.simulation = Simulation(
            env,
            LARGE_CONFIG,
            Telescope,
            planning_algorithm='heft',
            planning_model=SHADOWPlanning('heft'),
            scheduling=DynamicAlgorithmFromPlan,
            delay=None,
            timestamp=f'test/basic-workflow-data/output/{0}')

    def testSimulationRuns(self):
        """
        This is a quick test to make sure that we can simulate a large
        complex simulation where all the moving pieces exist.

        There are a couple of conditions that require us to simply ignore an
        allocation; there are circumstances that exist when an observation
        provisions resources for ingest at the same timestep as allocations
        are made by the scheduler. The observation/ingest is provision first,
        but the resources are not 'consumed' (moved from 'available to
        unavailable') until after the scheduler has seen that the resources are
        available and assigned tasks to them.

        This may be fixed in future approaches by using a 'shadow' allocation
        scheme, which acts as a way of maintaining more global state with the
        actors still 'theoretically' blind. The current approach is useful in
        that it prototypes the use of simpy returns in a useful way.

        Returns
        -------

        """
        self.simulation.start()
示例#16
0
文件: basic_sim.py 项目: myxie/topsim
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""
Basic simulation, with minimal Observation Plan and dummy observation workflows
"""

import simpy

from topsim.algorithms.scheduling import FifoAlgorithm
from topsim.core.simulation import Simulation
from topsim import common as test_data

workflow_file = 'test/data/daliuge_pipeline_test.json'
event_file = 'sim.trace'
planning_algorithm = 'heft'
# env = simpy.RealtimeEnvironment(factor=0.5, strict=False)
env = simpy.Environment()
tmax = 36  # for starters, we will define telescope configuration as simply number of arrays that exist
salgorithm = FifoAlgorithm()
vis = False

# TODO move things like 'heft' into a 'common' file which has SchedulingAlgorithm.HEFT = 'heft' etc.
simulation = Simulation(env, test_data.telescope_config, tmax,
                        test_data.machine_config, salgorithm, 'heft',
                        event_file, vis)
simulation.start(-1)
示例#17
0
from topsim.user.schedule.dynamic_plan import DynamicAlgorithmFromPlan
from topsim.user.telescope import Telescope
from topsim.core.simulation import Simulation
from topsim.core.delay import DelayModel

logging.basicConfig(level="WARNING")
LOGGER = logging.getLogger(__name__)
EVENT_FILE = 'simulations/heft_sim/output/heft_sim_delay_low.trace'

CONFIG = 'simulations/heft_sim/input/heft_single_observation_simulation.json'
env = simpy.Environment()

planning_algorithm = 'heft'
scheduling_algorithm = DynamicAlgorithmFromPlan
instrument = Telescope
dm = DelayModel(0.5, 'normal', DelayModel.DelayDegree.LOW)

simulation = Simulation(env=env,
                        config=CONFIG,
                        instrument=instrument,
                        algorithm_map={
                            'pheft': 'pheft',
                            'heft': 'heft',
                            'fifo': DynamicAlgorithmFromPlan
                        },
                        event_file=EVENT_FILE,
                        delay=dm)

simulation.start(-1)
# simulation.resume(200)
# User defined models
from user.telescope import Telescope  # Instrument
from user.schedule.dynamic_plan import DynamicAlgorithmFromPlan  # Scheduling
from user.schedule.greedy import GreedyAlgorithmFromPlan  # Scheduling
from user.schedule.batch_allocation import BatchProcessing
from user.plan.batch_planning import BatchPlanning  # Planning
from user.plan.static_planning import SHADOWPlanning

if __name__ == '__main__':

    LOGGER.info(f"Running experiment from {RUN_PATH}/{FOLDER_PATH}")
    env = simpy.Environment()
    instrument = Telescope
    # timestamp = f'{time.time()}'.split('.')[0]
    simulation = Simulation(env=env,
                            config=cfg_path,
                            instrument=instrument,
                            planning_algorithm='heft',
                            planning_model=SHADOWPlanning('heft'),
                            scheduling=DynamicAlgorithmFromPlan,
                            delay=None,
                            timestamp='skaworkflows_test',
                            to_file=True,
                            hdf5_path=f'{RUN_PATH}/{FOLDER_PATH}/results.h5'
                            # hdf5_path='',
                            # delimiters=f'test/'
                            )
    simulation.start()
LOGGER.info(f"Experiment finished, exiting script...")
示例#19
0
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""
Basic simulation, with minimal Observation Plan and dummy observation workflows
"""

import simpy
import logging

from topsim.user.schedule.dynamic_plan import DynamicAlgorithmFromPlan
from topsim.user.telescope import Telescope
from topsim.core.simulation import Simulation

logging.basicConfig(level="DEBUG")
LOGGER = logging.getLogger(__name__)

BASIC_CONFIG = 'simulations/basic_sim/input/basic_simulation.json'
EVENT_FILE = 'simulations/basic_sim/output/sim.trace'

# env = simpy.RealtimeEnvironment(factor=0.5, strict=False)
env = simpy.Environment()
event_file = EVENT_FILE
planning_algorithm = 'heft'
scheduling_algorithm = DynamicAlgorithmFromPlan
instrument = Telescope

algorith_map = {'heft': planning_algorithm, 'fifo': scheduling_algorithm}
simulation = Simulation(env, BASIC_CONFIG, instrument, algorith_map,
                        EVENT_FILE)

simulation.start(-1)
class TestMonitorPandasPickle(unittest.TestCase):
    def setUp(self) -> None:
        """
        Basic simulation using a single observation + heft workflow +
        homogenous system configuration.
        Returns
        -------
        """
        env = simpy.Environment()
        self.instrument = Telescope
        self.simulation = Simulation(
            env=env,
            config=CONFIG,
            instrument=self.instrument,
            planning_algorithm='heft',
            planning_model=SHADOWPlanning('heft'),
            scheduling=DynamicAlgorithmFromPlan,
            delay=None,
            timestamp='unittest',
            to_file=True,
            hdf5_path='test/simulation_data/test_hdf5.h5',
            delimiters=f'test/')

    def tearDown(self):
        output = f'{cwd}/test/simulation_pickles/{0}'
        os.remove('test/simulation_data/test_hdf5.h5')
        # os.remove(f'{output}-sim.pkl')
        # os.remove(f'{output}-tasks.pkl')

    def testHDF5GeneratedAfterSimulation(self):
        """
        Test that after a simulation, a HDF5 storage file is generated

        """
        self.simulation.start()
        self.assertTrue(os.path.exists('test/simulation_data/test_hdf5.h5'))

    def testHDF5KeysAndDataFramesExist(self):
        """
        Ensure that the generated HDF5 contains the correct results in the
        keys

        """

    def test_multi_simulation_data_merge(self):
        # global_sim_df = pd.DataFrame()
        # global_task_df = pd.DataFrame()

        for algorithm in ['heft', 'fcfs']:
            env = simpy.Environment()
            simulation = Simulation(
                env,
                CONFIG,
                self.instrument,
                planning_algorithm=algorithm,
                planning_model=SHADOWPlanning(algorithm),
                scheduling=DynamicAlgorithmFromPlan,
                delay=None,
                timestamp='unittest',
                hdf5_path='test/simulation_data/test_hdf5.h5',
                to_file=True,
                delimiters=f'{algorithm}')
            simulation.start()
        self.assertTrue(os.path.exists('test/simulation_data/test_hdf5.h5'))
        heft_key = '/dunittest/heft/heft_single_observation_simulation/sim/'
        fcfs_key = '/dunittest/fcfs/heft_single_observation_simulation/sim/'
        heft_sim = pd.read_hdf('test/simulation_data/test_hdf5.h5',
                               key=heft_key)
        self.assertEqual(120, len(heft_sim))
        self.assertEqual(3, heft_sim.iloc[-1]['available_resources'])
from topsim.core.simulation import Simulation
from topsim.core.delay import DelayModel
from user.telescope import Telescope
from user.scheduling import GreedyAlgorithmFromPlan

logging.basicConfig(level="DEBUG")
LOGGER = logging.getLogger(__name__)

CONFIG = f'visualisation_playground/series_observations.json'

env = simpy.Environment()
dm = DelayModel(0.20, 'normal', DelayModel.DelayDegree.HIGH)

instrument = Telescope
timestamp = f'{time.time()}'.split('.')[0]
cfg = CONFIG.split('/')[-1]
simulation = Simulation(
    env=env,
    config=CONFIG,
    instrument=instrument,
    algorithm_map={
        'heft': 'heft',
        'fifo': GreedyAlgorithmFromPlan
    },
    delay=dm,
    timestamp=f'visualisation_playground/results/{cfg}-{timestamp}')

# LOGGER.info("Simulation Starting")
simulation.start(-1)
# simulation.resume(10000)
示例#22
0
文件: default.py 项目: myxie/topsim
from topsim.core.simulation import Simulation

from topsim.algorithms.scheduling import FifoAlgorithm

# We need a number of configuration files for the basic set-up

TELESCOPE_CONFIG = 'test/data/config/observations.json'
CLUSTER_CONFIG = 'test/data/config/basic_spec-10.json'
BUFFER_CONFIG = 'test/data/config/buffer.json'
EVENT_FILE = 'recipes/output/sim.trace'

# Planning Algorithm - needs to be in our external library
planning_algorithm = 'heft'

# Scheduling Algorithm - these are implemented in a specific format to work
# in conjunction with the Scheduler Actor
scheduling_algorithm = FifoAlgorithm()

# Inititalise Simpy environment
env = simpy.Environment()

simulation = Simulation(env,
                        TELESCOPE_CONFIG,
                        CLUSTER_CONFIG,
                        BUFFER_CONFIG,
                        planning_algorithm,
                        scheduling_algorithm,
                        EVENT_FILE,
                        visualisation=False)
示例#23
0
# RUNNING SIMULATION AND GENERATING DATA

for algorithm in algorithms:
    for config in sorted(os.listdir(
            'publications/2021_isc-hpc/config/single_size/40cluster')):
        if '.json' in config:
            CONFIG = f'publications/2021_isc-hpc/config/single_size/40cluster/{config}'
            env = simpy.Environment()
            instrument = Telescope
            timestamp = f'{time.time()}'.split('.')[0]
            simulation = Simulation(
                env=env,
                config=CONFIG,
                instrument=instrument,
                planning=algorithm,
                scheduling=DynamicAlgorithmFromPlan,
                delay=None,
                timestamp={timestamp}
            )
            sim, tasks = simulation.start()
            global_sim = global_sim.append(sim)
            global_tasks = global_tasks.append(tasks)
            print(algorithm, config, len(sim))
global_tasks.to_pickle('tasks_output.pkl')
global_sim.to_pickle('simulation_output.pkl')

# PLOTTING SIMULATION DATA - originally produced in a Jupyter Notebook

# Group by planning, delay, and config to get the simulation time for each
# simulation.
示例#24
0
class TestBasicIngest(unittest.TestCase):

    def setUp(self) -> None:
        self.env = simpy.Environment()
        self.simulation = Simulation(
            self.env,
            BASIC_CONFIG,
            Telescope,
            planning_algorithm='heft',
            planning_model=SHADOWPlanning('heft'),
            scheduling=DynamicAlgorithmFromPlan,
            delay=None,
            timestamp=SIM_TIMESTAMP
        )

    # def tearDown(self):
    #     output = 'test/basic-workflow-data/output/{0}'
    #     os.remove(f'{output}-sim.pkl')
    #     os.remove(f'{output}-tasks.pkl')

    def testClusterIngest(self):
        """
        The basic ingest represents the edge cases for timing and scheduling
        within the simulation, as demonstrated in this test.

        There are a couple of edge cases that occur here, especially when we
        consider that we have only 2 resources; one of these will be taken by
        ingest, meaning that we cannot start an observation until 1 timestep
        AFTER an ingest has finished, because the telescope will check before
        that task is successfully removed from the cluster.

        This is why we run for 6 seconds and only process 2 observations.

        After we've observed 2 observations, we reach capacity on the
        cold-buffer so we are unable to observe any more.

        Returns
        -------

        """
        self.assertEqual(0, self.env.now)
        self.simulation.start(runtime=7)
        self.assertEqual(
            2, self.simulation.cluster._ingest['completed']
        )

        self.assertEqual(
            RunStatus.FINISHED,
            self.simulation.instrument.observations[1].status
        )

    def testBufferIngest(self):
        self.assertEqual(0, self.simulation.env.now)
        self.simulation.start(runtime=1)
        self.assertEqual(
            5, self.simulation.buffer.hot[0].current_capacity
        )
        self.simulation.resume(until=2)
        self.assertEqual(
            10, self.simulation.buffer.hot[0].current_capacity
        )
        self.assertEqual(
            5, self.simulation.buffer.cold[0].current_capacity
        )
        self.assertEqual(
            1,
            len(self.simulation.buffer.cold[0].observations["stored"])
        )
        self.simulation.resume(until=4)
        self.assertEqual(10, self.simulation.buffer.hot[0].current_capacity)
        self.assertEqual(0, self.simulation.buffer.cold[0].current_capacity)
        self.assertEqual(
            2,
            len(self.simulation.buffer.cold[0].observations["stored"])
        )

    def testSchedulerRunTime(self):
        self.assertEqual(0, self.simulation.env.now)
        self.simulation.start(runtime=2)
        self.assertEqual(
            1, len(self.simulation.buffer.cold[0].observations['stored'])
        )
        self.simulation.resume(until=8)
        self.simulation.resume(until=11)
        self.simulation.resume(until=12)
        # self.assertEqual(0, len(self.simulation.cluster.tasks['running']))
        # We've finished processing one of the workflows so one observation
        # is finished.
        self.assertEqual(
        2, len(self.simulation.buffer.cold[0].observations['stored'])
        )