示例#1
0
    def __getitem__(self, index):
        s = self.data[index]

        if False:  # cuda.is_available():
            return cuda.FloatTensor(s[0]), cuda.FloatTensor(s[1])
        else:
            return FloatTensor(s[0]) / 255, FloatTensor(s[1])
示例#2
0
 def init_hiddens(self, batch_size):
     h0 = Variable(tc.FloatTensor(self.num_layers * self.num_directions,
                                  batch_size, self.hidden_size).zero_(),
                   requires_grad=False)
     c0 = Variable(tc.FloatTensor(self.num_layers * self.num_directions,
                                  batch_size, self.hidden_size).zero_(),
                   requires_grad=False)
     return h0, c0
示例#3
0
 def forward(self, input=tc.FloatTensor(0)):
     '''
     This function runs forward propagation for Convolution operation
     :param input: output of previous layer
     :return: output of convolution of input with relu activation function
     '''
     self.input = input
     self.act_output = self.relu(
         self.layer.forward(tc.FloatTensor(self.input)))
     return self.act_output
示例#4
0
 def init_hidden(self):
     """
     PyTorch wants you to supply the last hidden state at each timestep
     to the LSTM.  You shouldn't need to call this function explicitly
     """
     if self.use_cuda:
         return (ag.Variable(cuda.FloatTensor(self.num_layers, 1, self.input_dim).zero_()),
                 ag.Variable(cuda.FloatTensor(self.num_layers, 1, self.input_dim).zero_()))
     else:
         return (ag.Variable(torch.FloatTensor(self.num_layers, 1, self.input_dim).zero_()),
                 ag.Variable(torch.FloatTensor(self.num_layers, 1, self.input_dim).zero_()))
示例#5
0
    def validation(self, loader):

        if self.epoch_step == 0:
            record_epoch_step = 0
        else:
            record_epoch_step = self.epoch_step - 1

        self.model.eval()
        total_loss = cuda.FloatTensor([0.])
        total_accu = cuda.FloatTensor([0.])

        widgets = [
            "processing: ",
            progressbar.Percentage(),
            " ",
            progressbar.ETA(),
            " ",
            progressbar.FileTransferSpeed(),
        ]
        bar = progressbar.ProgressBar(widgets=widgets,
                                      max_value=len(loader)).start()

        for i, batch in enumerate(loader):
            bar.update(i)
            batch_data, batch_label = batch

            batch_data = Variable(batch_data, volatile=True).cuda()
            batch_label = Variable(batch_label, volatile=True).cuda()
            logits = self.model(batch_data)

            loss = self.model.criterion(logits, batch_label)
            accu = self.accuracy(logits=logits, targets=batch_label).data
            total_accu.add_(accu)

            total_loss.add_(loss.data)
        #
        mean_loss = total_loss.cpu().numpy() / (i + 1)
        mean_accu = total_accu.cpu().numpy() / (i + 1)

        if self.writer is not None:
            self.writer.add_scalar('val/loss',
                                   scalar_value=mean_loss,
                                   global_step=record_epoch_step)
            self.writer.add_scalar('val/accu',
                                   scalar_value=mean_accu,
                                   global_step=record_epoch_step)
        #
        print('')
        print("validation-->epoch:{},mean_loss:{}, mean_accuracy:{}".format(
            record_epoch_step, mean_loss, mean_accu))

        bar.finish()
示例#6
0
    def __init__(
            self,
            num_params,  # number of model parameters
            sigma_init=0.10,  # initial standard deviation
            sigma_alpha=0.20,  # learning rate for standard deviation
            sigma_decay=0.999,  # anneal standard deviation
            sigma_limit=0.01,  # stop annealing if less than this
            learning_rate=1,  # learning rate for standard deviation
            learning_rate_decay=0.9999,  # annealing the learning rate
            learning_rate_limit=0.001,  # stop annealing learning rate
            popsize=255,  # population size
            done_threshold=1e-6,  # threshold when we say we are done
            average_baseline=True,  # set baseline to average of batch
            weight_decay=0.01,  # weight decay coefficient
            rank_fitness=True,  # use rank rather than fitness numbers
            forget_best=True,
            diversity_base=0.01):  # don't keep the historical best solution

        self.num_params = num_params
        self.sigma_init = sigma_init
        self.sigma_alpha = sigma_alpha
        self.sigma_decay = sigma_decay
        self.sigma_limit = sigma_limit
        self.learning_rate = learning_rate
        self.learning_rate_decay = learning_rate_decay
        self.learning_rate_limit = learning_rate_limit
        self.popsize = popsize
        self.average_baseline = average_baseline
        if self.average_baseline:
            assert (self.popsize % 2 == 0), "Population size must be even"
            self.batch_size = int(self.popsize / 2)
        else:
            assert (self.popsize & 1), "Population size must be odd"
            self.batch_size = int((self.popsize - 1) / 2)
        self.forget_best = forget_best

        #         self.batch_reward = torch_c.FloatTensor(self.batch_size*2).fill_(0.0)
        self.mu = torch_c.FloatTensor(self.num_params).fill_(0.0)
        self.sigma = torch_c.FloatTensor(self.num_params).fill_(
            self.sigma_init)
        #         self.curr_best_mu = torch_c.FloatTensor(self.num_params).fill_(0.0)
        #         self.best_mu = torch_c.FloatTensor(self.num_params).fill_(0.0)

        self.best_reward = 0
        self.first_interation = True
        self.weight_decay = weight_decay
        self.rank_fitness = rank_fitness
        if self.rank_fitness:
            self.forget_best = True  # always forget the best one if we rank
        self.done_threshold = done_threshold
        self.diversity_base = diversity_base
        self.mdb = 0
示例#7
0
def data_params():
    """
    Returns random data and parameters used to generate the data.
    """
    S = int(1e5)
    theta_1 = 0.5
    theta_2 = 0.3
    pi_1 = 0.6
    pi_2 = 1 - pi_1
    N_ls_all = t.FloatTensor([100 for _ in range(S)])
    theta_ls = t.FloatTensor(
        np.random.choice([theta_1, theta_2], size=S, p=[pi_1, pi_2]))
    n_ls_all = Binomial(N_ls_all, theta_ls).sample()
    return N_ls_all, n_ls_all, [pi_1, pi_2, theta_1, theta_2]
    def initialize_pi_theta(self, N_ls, n_ls):
        '''
        Initialize pi_list and theta_list based on the input data
        N_ls and n_ls.

        This is a better initialization than completely random
        initilaization, since it takes into account information from N_ls and
        n_ls, and thus a better initialization should help the EM iterations
        in the .fit() method to converge faster.

        Input
        -----
        N_ls: 1D tensor
        n_ls: 1D tensor

        Output
        ------
        None
        '''

        # Conver to numpy.array
        N_array = np.array(N_ls.cpu())
        n_array = np.array(n_ls.cpu())

        # list of n/N sorted in ascending order
        ratio_ls = np.sort(n_array / N_array)

        # reproducibility
        np.random.seed(seed=123)

        # pick K random integer indice, [index_1, ..., index_K]
        random_indice = np.sort(np.random.choice(len(ratio_ls), self.K))
        # theta are the ratio at the random indice, { ratio_ls[index_k] | k=1,2,...,K }
        theta_array = ratio_ls[random_indice]

        # the proportion of the midpoint of each pair of consecutive indice
        # (index_k + index_{k+1})/2/len(ratio_ls), for k=1,2,...,K-1
        acc_portion_ls = (random_indice[1:] +
                          random_indice[:-1]) / 2.0 / len(ratio_ls)
        acc_portion_ls = np.append(acc_portion_ls, 1.0)
        # initialize pi_list using the portions of indice
        pi_array = np.insert(acc_portion_ls[1:] - acc_portion_ls[:-1],
                             obj=0,
                             values=acc_portion_ls[0])

        # convert numpy arrays to torch tensors.
        self.theta_list = t.FloatTensor(theta_array)
        self.pi_list = t.FloatTensor(pi_array)
示例#9
0
    def ask(self):
        '''returns a list of parameters'''
        # antithetic sampling
        self.epsilon = torch_c.FloatTensor(self.batch_size,
                                           self.num_params).normal_()
        self.epsilon.mul_(self.sigma.expand(self.batch_size, self.num_params))
        self.epsilon_full = torch.cat((self.epsilon, -1 * self.epsilon))

        if self.average_baseline:
            epsilon = self.epsilon_full
        else:
            zeros = torch_c.FloatTensor(1, self.num_params).fill_(0.0)
            epsilon = torch.cat((zeros, self.epsilon_full))
        solutions = self.mu.expand(epsilon.size()) + epsilon
        self.solutions = solutions
        return solutions
示例#10
0
    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = cuda.FloatTensor(1, self.tagset_size).fill_(-10000.)
        # START_TAG has all of the score.
        init_alphas[0][self.tag_idx[cfg.SENT_START]] = 0.

        # Wrap in a variable so that we will get automatic backprop
        forward_var = Variable(init_alphas)

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward variables at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(1, -1).expand(
                    1, self.tagset_size)
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1)
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(self.log_sum_exp(next_tag_var).view(1))

            forward_var = torch.cat(alphas_t).view(1, -1)
        terminal_var = forward_var + self.transitions[self.tag_idx[
            cfg.SENT_END]]
        alpha = self.log_sum_exp(terminal_var)
        return alpha
示例#11
0
    def __init__(self, emb_mat, tag_idx):
        super(BiLSTM_CRF, self).__init__()
        self.emb_mat_tensor = Variable(cuda.FloatTensor(emb_mat))
        self.embedding_dim = self.emb_mat_tensor.size(1)
        self.hidden_dim = cfg.LSTM_HIDDEN_SIZE
        self.vocab_size = self.emb_mat_tensor.size(0)
        self.tag_idx = tag_idx
        self.tagset_size = len(tag_idx)

        self.word_embeds = nn.Embedding(self.vocab_size, self.embedding_dim)
        self.lstm = nn.LSTM(self.embedding_dim,
                            self.hidden_dim,
                            num_layers=1,
                            bidirectional=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(self.hidden_dim * 2, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j.
        self.transitions = nn.Parameter(
            torch.randn(self.tagset_size, self.tagset_size)).cuda()

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_idx[cfg.SENT_START], :] = -10000
        self.transitions.data[:, tag_idx[cfg.SENT_END]] = -10000

        self.hidden = self.init_hidden()
    def __init__(self,
                 n_components,
                 tolerance=1e-5,
                 max_step=1000,
                 verbose=True):
        '''
        Initialize the object.

        Input
        -----
        n_components: int
                      number of Binomial Distributions in the Mixture.
        tolerance: Float
                   the object fits the data by EM iteration. tolerance is used to define one
                   of the conditions for the iteration to stop. This condition says that
                   the iteration continues until the change of the parameters within the
                   current iteration is greater than tolerance.
        max_step: int
                  the maximum number of iteration steps.
        verbose: Boolean
                 whether to print out the information of the fitting process.
        '''
        self.K = n_components  # int, number of Binomial distributions in the Mixture
        self.tolerance = tolerance
        self.max_step = max_step
        self.verbose = verbose

        # initialize the pi_list
        pi_list = Uniform(low=1e-6,
                          high=1e0 - 1e-6).sample([self.K - 1]).to(device)
        pi_K = t.FloatTensor([1e0]) - pi_list.sum()
        self.pi_list = torch.cat([pi_list, pi_K], dim=0)

        # initialize the theta_list
        self.theta_list = Uniform(low=1e-6, high=1e0 - 1e-6).sample([self.K])
示例#13
0
    def forward(self,
                input=tc.FloatTensor(0).detach(),
                target=tc.FloatTensor(0).detach()):
        '''
        This function runs forward pass with softmax and categorical cross entropy
        :param input: the previous layer output
        :param target: the labels
        :return: the prediction
        '''
        self.input = input.detach()

        self.target = target
        self.output, self.loss = self.softmax_with_cross_entropy(
            self.input, self.target)

        return self.output
示例#14
0
文件: model.py 项目: wubinzzu/GATE
    def forward(self, batch_item_index, batch_x, batch_word_seq,
                batch_neighbor_index):
        z_1 = F.tanh(self.linear1(batch_x))
        # z_1 = F.dropout(z_1, self.drop_rate)

        z_rating = F.tanh(self.linear2(z_1))
        z_content = self.get_content_z(batch_word_seq)

        gate = F.sigmoid(
            z_rating.mm(self.gate_matrix1) + z_content.mm(self.gate_matrix2) +
            self.gate_bias)
        gated_embedding = gate * z_rating + (1 - gate) * z_content

        # save the embedding for direct lookup
        self.item_gated_embedding.weight[
            batch_item_index] = gated_embedding.data

        gated_neighbor_embedding = self.item_gated_embedding(
            batch_neighbor_index)

        # aug_gated_embedding: [256, 1, 50]
        aug_gated_embedding = torch.unsqueeze(gated_embedding, 1)
        score = torch.matmul(aug_gated_embedding,
                             torch.unsqueeze(self.neighbor_attention, 0))
        # score: [256, 1, 480]
        score = torch.bmm(score, gated_neighbor_embedding.permute(0, 2, 1))

        # make the 0 in score, which will make a difference in softmax
        score = torch.where(score == 0, T.FloatTensor([float('-inf')]), score)
        score = F.softmax(score, dim=2)
        # if the vectors all are '-inf', softmax will generate 'nan', so replace with 0
        score = torch.where(score != score, T.FloatTensor([0]), score)
        gated_neighbor_embedding = torch.bmm(score, gated_neighbor_embedding)
        gated_neighbor_embedding = torch.squeeze(gated_neighbor_embedding, 1)

        # gated_embedding = F.dropout(gated_embedding, self.drop_rate)
        # gated_neighbor_embedding = F.dropout(gated_neighbor_embedding, self.drop_rate)

        z_3 = F.tanh(self.linear3(gated_embedding))
        # z_3 = F.dropout(z_3, self.drop_rate)
        z_3_neighbor = F.tanh(self.linear3(gated_neighbor_embedding))
        # z_3_neighbor = F.dropout(z_3_neighbor, self.drop_rate)

        y_pred = F.sigmoid(
            self.linear4(z_3) + z_3_neighbor.mm(self.linear4.weight.t()))

        return y_pred
示例#15
0
    def __getitem__(self, index):

        if not hasattr(self, 'hdf5_dataset'):
            self.open_hdf5()

        idx_eFTrack_Eta = tcuda.LongTensor([self.eFTrack_Eta[index]],
                                           device=self.rank)
        idx_eFTrack_Phi = tcuda.LongTensor([self.eFTrack_Phi[index]],
                                           device=self.rank)
        val_eFTrack_PT = tcuda.FloatTensor(self.eFTrack_PT[index],
                                           device=self.rank)

        idx_eFPhoton_Eta = tcuda.LongTensor([self.eFPhoton_Eta[index]],
                                            device=self.rank)
        idx_eFPhoton_Phi = tcuda.LongTensor([self.eFPhoton_Phi[index]],
                                            device=self.rank)
        val_eFPhoton_ET = tcuda.FloatTensor(self.eFPhoton_ET[index],
                                            device=self.rank)

        idx_eFNHadron_Eta = tcuda.LongTensor([self.eFNHadron_Eta[index]],
                                             device=self.rank)
        idx_eFNHadron_Phi = tcuda.LongTensor([self.eFNHadron_Phi[index]],
                                             device=self.rank)
        val_eFNHadron_ET = tcuda.FloatTensor(self.eFNHadron_ET[index],
                                             device=self.rank)

        calorimeter, scaler = self.process_images(idx_eFTrack_Eta,
                                                  idx_eFPhoton_Eta,
                                                  idx_eFNHadron_Eta,
                                                  idx_eFTrack_Phi,
                                                  idx_eFPhoton_Phi,
                                                  idx_eFNHadron_Phi,
                                                  val_eFTrack_PT,
                                                  val_eFPhoton_ET,
                                                  val_eFNHadron_ET)

        # Set labels
        labels_raw = tcuda.FloatTensor(self.labels[index], device=self.rank)
        labels_processed = self.process_labels(labels_raw, scaler)

        if self.return_baseline:
            base_raw = tcuda.FloatTensor(self.base[index], device=self.rank)
            base_processed = self.process_baseline(base_raw)
            return calorimeter, labels_processed, base_processed, scaler

        return calorimeter, labels_processed
示例#16
0
    def forward(self, input=tc.FloatTensor(0)):
        '''
        This function runs forward propagation of maxpooling
        :param input: output of previous layer
        :return: max pooling operation result
        '''

        self.input = input.detach()
        self.output, self.indices = self.layer.forward(self.input)
        return self.output
示例#17
0
def train(data, model, optimizer, verbose=True):
    criterion = nn.NLLLoss()

    if model.use_cuda:
        criterion.cuda()

    correct_actions = 0
    total_actions = 0
    tot_loss = 0.
    instance_count = 0

    for sentence, actions in data:

        if len(sentence) <= 2:
            continue

        optimizer.zero_grad()
        model.refresh()

        outputs, _, actions_done = model(sentence, actions)

        if model.use_cuda:
            loss = ag.Variable(cuda.FloatTensor([0]))
            action_idxs = [
                ag.Variable(cuda.LongTensor([a])) for a in actions_done
            ]
        else:
            loss = ag.Variable(torch.FloatTensor([0]))
            action_idxs = [
                ag.Variable(torch.LongTensor([a])) for a in actions_done
            ]

        for output, act in zip(outputs, action_idxs):
            loss += criterion(output.view(-1, 3), act)

        tot_loss += utils.to_scalar(loss.data)
        instance_count += 1

        for gold, output in zip(actions_done, outputs):
            pred_act = utils.argmax(output.data)
            if pred_act == gold:
                correct_actions += 1
        total_actions += len(outputs)

        loss.backward()
        optimizer.step()

    acc = float(correct_actions) / total_actions
    loss = float(tot_loss) / instance_count
    if verbose:
        print(
            "Number of instances: {}    Number of network actions: {}".format(
                instance_count, total_actions))
        print("Acc: {}  Loss: {}".format(
            float(correct_actions) / total_actions, tot_loss / instance_count))
示例#18
0
    def forward(self, input=tc.FloatTensor(0).detach()):
        '''
        This function runs forward prop fully connected layer
        :param input: the previous layer of output
        :return: the activation function output applied dense operation
        '''

        self.input = input.detach()
        self.act_output = self.relu(
            torch.mm(self.input, self.weight) + self.bias).detach()
        return self.act_output
示例#19
0
 def __init__(self, vocabulary_size, context_size,
              user_latent_factors_count, item_latent_factors_count):
     super(ContextMerger, self).__init__()
     self.user_model = nn.Linear(user_latent_factors_count,
                                 context_size,
                                 bias=False)
     self.item_model = nn.Linear(item_latent_factors_count,
                                 context_size,
                                 bias=False)
     self.rating_weight = nn.Parameter(device.FloatTensor(1))
     self.review_model = nn.Linear(vocabulary_size, context_size, bias=True)
示例#20
0
    def positional_encoding(self, seq_len, emb_dim):
        position_encoding = np.array([[
            pos / np.power(10000, 2.0 * (j // 2) / emb_dim)
            for j in range(emb_dim)
        ] for pos in range(seq_len)])
        # apply sin to even indices in the array; 2i
        position_encoding[:, 0::2] = np.sin(position_encoding[:, 0::2])
        # apply cos to odd indices in the array; 2i+1
        position_encoding[:, 1::2] = np.cos(position_encoding[:, 1::2])

        return T.FloatTensor(position_encoding, requires_grad=False)
示例#21
0
    def __init__(
        self,
        num_params,  # number of model parameters
        sigma_init=0.1,  # initial standard deviation
        sigma_decay=0.999,  # anneal standard deviation
        sigma_limit=0.01,  # stop annealing if less than this
        learning_rate=0.01,  # learning rate for standard deviation
        learning_rate_decay=0.9999,  # annealing the learning rate
        learning_rate_limit=0.001,  # stop annealing learning rate
        popsize=255,  # population size
        antithetic=False,  # whether to use antithetic sampling
        forget_best=True  # forget historical best
    ):

        self.num_params = num_params
        self.sigma_decay = sigma_decay
        self.sigma = sigma_init
        self.sigma_limit = sigma_limit
        self.learning_rate = learning_rate
        self.learning_rate_decay = learning_rate_decay
        self.learning_rate_limit = learning_rate_limit
        self.popsize = popsize
        if self.popsize % 2 == 1:
            self.popsize += 1

        self.antithetic = antithetic
        self.half_popsize = int(self.popsize / 2)

        self.reward = np.zeros(self.popsize)
        self.best_mu = torch_c.FloatTensor(self.num_params).fill_(0.0)
        self.mu = torch_c.FloatTensor(self.num_params).fill_(
            0.0
        )  # I believe borrow the DNN initial val will help, try it later
        self.best_reward = 0
        self.first_interation = True
        self.forget_best = forget_best
        self.diversity_base = 0
        self.mdb = 0

        print(self.sigma, self.learning_rate)
    def sample(self) -> ParameterOrVariable:
        """Return a sample from the normal distribution with these parameters.

        Returns:
            Tensor of N(self.mean, self.alpha) samples, same shape.

        This uses the reparametrization trick, so the return value is
        differentiable w.r.t. `self.mean` and `self.alpha`, and can be used as
        such in a backpropagation operation.

        """
        epsilon = TP.FloatTensor(*self.size()).normal_(mean=0, std=1)
        return self.mean + Variable(epsilon) * self.alpha
示例#23
0
    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = Variable(cuda.FloatTensor([0]))

        start_tag = Variable(
            torch.cuda.LongTensor([self.tag_idx[cfg.SENT_START]]))
        tags = torch.cat([start_tag, tags], dim=0)
        for i, feat in enumerate(feats):
            score = score + self.transitions[tags.data[i + 1], tags.data[i]]
            score += feat[tags[i + 1]]
        score = score + self.transitions[self.tag_idx[cfg.SENT_END],
                                         tags.data[-1]]
        return score
示例#24
0
def validation(loader, model, writer):
    model.eval()
    total_loss = cuda.FloatTensor([0.])
    total_accu = cuda.FloatTensor([0.])

    widgets = [
        "processing: ",
        progressbar.Percentage(),
        " ",
        progressbar.ETA(),
        " ",
        progressbar.FileTransferSpeed(),
    ]
    bar = progressbar.ProgressBar(widgets=widgets,
                                  max_value=len(loader)).start()
    for i, batch in enumerate(loader):
        bar.update(i)
        batch_data, batch_label = batch

        batch_data = Variable(batch_data).cuda()
        batch_label = Variable(batch_label).cuda()
        logits = model(batch_data)

        loss = model.criterion(logits, batch_label)
        accu = tools.accuracy(logits=logits, targets=batch_label).data
        total_accu.add_(accu)

        total_loss.add_(loss.data)

    mean_loss = total_loss.cpu().numpy() / (i + 1)
    mean_accu = total_accu.cpu().numpy() / (i + 1)
    writer.add_scalar('val/loss', scalar_value=mean_loss, global_step=EPOCH)
    writer.add_scalar('val/accu', scalar_value=mean_accu, global_step=EPOCH)

    print('')
    print("validation-->epoch:{},mean_loss:{}, mean_accuracy:{}".format(
        EPOCH, mean_loss, mean_accu))
    bar.finish()
示例#25
0
    def forward(self, input=tc.FloatTensor(0).detach()):
        '''
        This function runs forward prop flatten operation from 4d  to 2d
        :param input: the previous layer output
        :return: 2d matrix
        '''
        self.input = input.detach()
        self.batch_size = self.input.shape[0]
        self.channel_size = self.input.shape[1]
        self.width = self.input.shape[2]
        self.height = self.input.shape[3]

        self.output = self.input.view(self.batch_size, -1).detach()
        return self.output
示例#26
0
    def neg_log_likelihood(self, sentences, tags):
        total_loss = Variable(cuda.FloatTensor([0]))
        for sentence, tag in zip(sentences, tags):
            sentence = sentence[1:-1]
            tag = tag[1:-1]
            sent_var = Variable(cuda.LongTensor(sentence))
            tag_var = Variable(cuda.LongTensor(tag))

            feats = self._get_lstm_features(sent_var)
            forward_score = self._forward_alg(feats)
            gold_score = self._score_sentence(feats, tag_var)
            total_loss += forward_score - gold_score

        return total_loss
示例#27
0
    def __init__(self, input, dense_number):
        '''
        This function creates dense instance with given dense size
        :param input: output of previous layer
        :param dense_number: number of dense layer
        '''

        self.input = input.detach()
        self.dense_number = dense_number

        self.batch_size = self.input.shape[0]
        self.input_size = self.input.shape[1]
        #initialize weights and biases
        self.weight = tc.FloatTensor(
            np.random.normal(size=(self.input_size, self.dense_number),
                             loc=0,
                             scale=0.01).astype(np.float32)).type(
                                 torch.float32).detach()
        self.bias = tc.FloatTensor(np.zeros(
            (1, dense_number))).type(torch.float32).detach()
        #momentum terms
        self.delta_w = 0
        self.delta_b = 0
示例#28
0
def evaluate(data, model, verbose=False):

    correct_actions = 0
    total_actions = 0
    tot_loss = 0.
    instance_count = 0
    criterion = nn.NLLLoss()

    if model.use_cuda:
        criterion.cuda()

    for sentence, actions in data:

        if len(sentence) > 1:
            outputs, _, actions_done = model(sentence, actions)

            if model.use_cuda:
                loss = ag.Variable(cuda.FloatTensor([0]))
                action_idxs = [
                    ag.Variable(cuda.LongTensor([a])) for a in actions_done
                ]
            else:
                loss = ag.Variable(torch.FloatTensor([0]))
                action_idxs = [
                    ag.Variable(torch.LongTensor([a])) for a in actions_done
                ]

            for output, act in zip(outputs, action_idxs):
                loss += criterion(output.view((-1, 3)), act)

            tot_loss += utils.to_scalar(loss.data)
            instance_count += 1

            for gold, output in zip(actions_done, outputs):
                pred_act = utils.argmax(output.data)
                if pred_act == gold:
                    correct_actions += 1

            total_actions += len(outputs)

    acc = float(correct_actions) / total_actions
    loss = float(tot_loss) / instance_count
    if verbose:
        print(
            "Number of instances: {}    Number of network actions: {}".format(
                instance_count, total_actions))
        print("Acc: {}  Loss: {}".format(
            float(correct_actions) / total_actions, tot_loss / instance_count))
    return acc, loss
示例#29
0
 def forward(self, input):
     '''
     This function runs forward prop for dropout
     :param input: the output of the previous layer
     :return: dropout result
     '''
     self.input = input.detach()
     #create mask
     self.dropout_matrix = tc.FloatTensor(
         np.random.binomial(1, 1 - self.dropout,
                            size=self.kernel_number)).expand_as(
                                self.input).detach()
     #apply mask
     self.output = torch.mul(self.input, self.dropout_matrix).detach() / (
         1 - self.dropout + np.exp(-32))
     return self.output
示例#30
0
 def __init__(self, input, dropout):
     '''
     This function create instance for Dropout layer
     :param input: the output from previous layer
     :param dropout: dropout layer probability rate
     '''
     #check the input that has dimension of two
     if len(input.shape) != 2:
         raise ValueError('Input shape should be 2 dimensional')
     #initialize class attributes
     self.input = input.detach()
     self.dropout = dropout
     self.batch_size = self.input.shape[0]
     self.kernel_number = self.input.shape[1]
     #create dropout matrix
     self.dropout_matrix = tc.FloatTensor(np.zeros(
         self.input.shape)).detach()