def test_studentT_likelihood(df: float, loc: float, scale: float):

    dfs = torch.zeros((NUM_SAMPLES, )) + df
    locs = torch.zeros((NUM_SAMPLES, )) + loc
    scales = torch.zeros((NUM_SAMPLES, )) + scale

    distr = StudentT(df=dfs, loc=locs, scale=scales)
    samples = distr.sample()

    init_bias = [
        inv_softplus(df - 2),
        loc - START_TOL_MULTIPLE * TOL * loc,
        inv_softplus(scale - START_TOL_MULTIPLE * TOL * scale),
    ]

    df_hat, loc_hat, scale_hat = maximum_likelihood_estimate_sgd(
        StudentTOutput(),
        samples,
        init_biases=init_bias,
        num_epochs=15,
        learning_rate=1e-3,
    )

    assert (np.abs(df_hat - df) <
            TOL * df), f"df did not match: df = {df}, df_hat = {df_hat}"
    assert (np.abs(loc_hat - loc) <
            TOL * loc), f"loc did not match: loc = {loc}, loc_hat = {loc_hat}"
    assert (np.abs(scale_hat - scale) < TOL * scale
            ), f"scale did not match: scale = {scale}, scale_hat = {scale_hat}"
示例#2
0
class EpsiSampler:
    def __init__(self, x, epsi_nu):
        self.x = x
        self.len = self.x.shape[0]
        self.epsi_nu = epsi_nu
        self.tdistribution = StudentT(self.epsi_nu)

    def epsisamp(self, epsi, tau, mu):
        # assumes no covariance between epsilons; does not sample as a single block

        # Newton-Raphson iterations to find proposal density
        mu_f, hf, hf_inv = self.epsi_nr(epsi, mu, tau)

        # now propose with multivariate t centered at epsiMLE with covariance matrix from Hessian
        # note that since Hessian is diagonal, we can just simulate from n univariate t's.

        epsi_p = mu_f + hf_inv.neg().sqrt() * self.tdistribution.sample(
            torch.Size([self.len, 1]))
        # epsi_p = torch.randn(mu_f, -hf_inv)
        arat = self.pratepsi(epsi, epsi_p, tau, mu) + \
               tqrat(epsi, epsi_p, mu_f, mu_f, hf_inv.neg().sqrt(), hf_inv.neg().sqrt(), self.epsi_nu)

        ridx = torch.rand(self.len, 1).log() >= arat.clamp(max=0)
        ridx_float = ridx.type(torch.float32)

        epsi[~ridx] = epsi_p[~ridx]
        mrej = (1 - ridx_float).mean()
        return epsi, mrej

    # TODO: find out if .exp() legal here
    def pratepsi(self, epsi, epsi_p, tau, mu):
        pr = epsi_p * self.x / tau.sqrt() - (mu + epsi_p / tau.sqrt()).exp() - epsi_p ** 2 / 2 - \
             (epsi * self.x / tau.sqrt() - (mu + epsi / tau.sqrt()).exp() - epsi ** 2 / 2)
        return pr

    def epsi_nr(self, epsi, mu, tau):
        h, h_inv = 0, 0

        for i in range(1, 100):
            h, h_inv = self.hessepsi(epsi, tau, mu)

            # N - R update
            grad = self.gradepsi(epsi, tau, mu)
            epsi = epsi - h_inv * grad

            # we've reached a local maximum
            if grad.norm() < 1e-6:
                break
        return epsi, h, h_inv

    @staticmethod
    def hessepsi(epsi, tau, mu):
        h = -(mu + epsi / tau.sqrt()).exp() / tau - 1
        h_inv = 1 / h
        return h, h_inv

    def gradepsi(self, epsi, tau, mu):
        gr = self.x / tau.sqrt() - (
            mu + epsi / torch.sqrt(tau)).exp() / tau.sqrt() - epsi
        return gr
示例#3
0
    def _reweight(self, N=100000):
        # Expect value: \mathbb{E}_{x~X}Ramp(|x|)
        if not hasattr(self, 'epv'):
            self.Hfunc = self.config.Hfunc
            # self.Hfunc = 'ramp'
            if self.real == 'Student':
                tdist = StudentT(df=self.config.r_df)
                x = tdist.sample((5000000, ))
            elif self.real == 'Gaussian':
                ndist = Normal(0, 1)
                x = ndist.sample((5000000, ))
            self.epv = self._HFunc(x, mode=self.Hfunc).mean().item()

        def sov_func(a, bs=1000):
            # find a suitable factor a to match expected value.
            r = AveMeter()
            for _ in range(N // bs):
                if self.config.use_ig:
                    ub1 = torch.randn(bs,
                                      self.netGXi.input_dim // 2).to(device)
                    ub2 = torch.randn(
                        bs, self.netGXi.input_dim -
                        self.netGXi.input_dim // 2).to(device)
                    ub2.data.div_(torch.abs(ub2.data) + self.config.delta)
                    ub = torch.cat([ub1, ub2], dim=1)
                else:
                    ub = torch.randn(bs, self.netGXi.input_dim).to(device)
                with torch.no_grad():
                    xib = self.netGXi(ub)
                zb = torch.randn(bs, self.dim).to(device)
                vu = (zb[:, 0].div_(zb.norm(2, dim=1)) +
                      self.config.delta).to(device)
                r.update(
                    self._HFunc(a * xib * vu, mode=self.Hfunc).mean().item(),
                    bs)
            return r.avg - self.epv

        # if sov_func(1) > 0: down,up= 0,3
        # elif sov_func(3) > 0: down,up = 0,5
        # elif sov_func(10) > 0: down,up = 1,12
        # elif sov_func(25) > 0: down,up = 8,27
        # elif sov_func(75) > 0: down,up = 23,77
        if sov_func(250) > 0:
            down, up = 0, 3000
        else:
            logger.info('Factor is larger than 2500!')
            return 250
        factor = bisect(sov_func, down, up)
        print(factor)
        return factor