def test_partition_device_mapping(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, a): b = torch.rand(4) add_1 = a + b linear_1 = self.linear(add_1) add_2 = torch.rand(4) + a add_3 = add_2 + linear_1 return add_3 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) GraphManipulation.get_size_of_all_nodes(traced, [a]) partitioner = Partitioner() devices = [Device("dev_0", 120, 0), Device("dev_1", 160, 1)] partitioner_config = PartitionerConfig(devices, is_sparse_nn=False) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(traced(a), module_with_submodules(a)) for i, node in enumerate(dag.nodes): if i == 1: assert node.logical_device_ids == [1] else: assert node.logical_device_ids == [0]
def test_partition_node_manipulation(self): class TestModule(torch.nn.Module): def forward(self, a, b): add_1 = a + b add_2 = add_1 + torch.rand(4) add_3 = add_2 + torch.rand(4) return add_3 m = TestModule() traced = symbolic_trace(m) a, b = torch.rand(4), torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a, b]) partitioner = Partitioner() devices = [Device('dev_0', 1000, 0)] partitioner_config = PartitionerConfig(devices) ret = partitioner.partition_graph(traced, m, partitioner_config) partition = partitioner.partitions[0] assert partition.used_mem_bytes == 112 # Select add_3 node to remove selected_node = None for node in partition.nodes: if node.name == 'add_3': selected_node = node partition.remove_node(selected_node) assert(partition.used_mem_bytes == 80)
def test_size_based_partition(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, a, b): add_1 = a + b linear = self.linear(add_1) e = torch.rand(4) add_2 = linear + e return add_2 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) b = torch.rand(4) GraphManipulation.get_size_of_all_nodes(traced, [a, b]) partitioner = Partitioner() devices = [ Device("dev_0", 125, 0), Device("dev_1", 125, 1), Device("dev_2", 125, 2), ] partitioner_config = PartitionerConfig(devices) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(traced(a, b), module_with_submodules(a, b)) for i, node in enumerate(dag.nodes): assert node.logical_device_ids == [i]
def test_large_node_error(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, a): linear = self.linear(a) add = linear + a return add m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a]) partitioner = Partitioner() devices = [ Device("dev_0", 40, 0), Device("dev_1", 40, 0), Device("dev_2", 40, 0), Device("dev_3", 40, 0), Device("dev_4", 40, 0) ] partitioner_config = PartitionerConfig(devices, PartitionMode.size_based) catch_runtime_error = False try: ret = partitioner.partition_graph(traced, m, partitioner_config) except RuntimeError: catch_runtime_error = True assert catch_runtime_error
def test_cost_aware_partition(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, a): add_1 = a + torch.rand(4) add_2 = add_1 + torch.rand(4) linear_1 = self.linear(add_1) add_3 = add_2 + torch.rand(4) add_4 = add_2 + linear_1 add_5 = add_3 + add_4 return add_5 def get_node_to_latency_mapping(fx_module: GraphModule): node_to_latency_mapping: Dict[Node, Nodelatency] = {} for node in fx_module.graph.nodes: if node.op not in {'output', 'placeholder', 'get_attr'}: if node.size_bytes.total_size == node.size_bytes.output_size: node_to_latency_mapping[node] = NodeLatency( node.size_bytes.total_size, 1) else: node_to_latency_mapping[node] = NodeLatency( node.size_bytes.total_size, node.size_bytes.output_size) return node_to_latency_mapping m = MyModule() traced = symbolic_trace(m) a = torch.rand(4) GraphManipulation.get_size_of_all_nodes(traced, [a]) devices = [ Device('dev_0', 125, 0), Device('dev_1', 125, 1), Device('dev_2', 125, 2), Device('dev_3', 125, 3) ] node_to_latency_mapping = get_node_to_latency_mapping(traced) partitioner_config = PartitionerConfig( devices, is_sparse_nn=False, is_cost_aware=True, transfer_rate_bytes_per_sec=2, node_to_latency_mapping=node_to_latency_mapping) partitioner = Partitioner() ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(traced(a), module_with_submodules(a)) partitions = partitioner.partitions partition_to_latency_mapping = get_partition_to_latency_mapping( partitions, node_to_latency_mapping) critical_path_latency_sec = get_latency_of_partitioned_graph( partitions, partition_to_latency_mapping, partitioner_config.transfer_rate_bytes_per_sec) assert critical_path_latency_sec == 160.
def test_partition_latency(self): class TestModule(torch.nn.Module): def __init__(self): super(TestModule, self).__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, a): add_1 = a + torch.rand(4) add_2 = add_1 + torch.rand(4) linear_1 = self.linear(add_1) add_3 = add_2 + linear_1 add_4 = add_2 + add_3 return add_4 def get_node_to_latency_mapping(fx_module: GraphModule): """Given a fx module, generate node latency for each node based on the size of each node """ node_to_latency_mapping: Dict[Node, NodeLatency] = {} for node in fx_module.graph.nodes: if node.op not in {"output", "placeholder", "get_attr"}: if node.size_bytes.total_size == node.size_bytes.output_size: node_to_latency_mapping[node] = NodeLatency( node.size_bytes.total_size, 2.0 * node.size_bytes.total_size ) else: node_to_latency_mapping[node] = NodeLatency( node.size_bytes.total_size, node.size_bytes.output_size ) return node_to_latency_mapping m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a]) node_to_latency_mapping = get_node_to_latency_mapping(traced) devices = [Device("dev_0", 200, 0), Device("dev_1", 200, 1)] partitioner = Partitioner() partitioner_config = PartitionerConfig(devices) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules self.assertEqual(traced(a), module_with_submodules(a)) partitions = partitioner.partitions partition_to_latency_mapping = get_partition_to_latency_mapping( partitions, node_to_latency_mapping ) for p in partition_to_latency_mapping: if p.partition_id == 0: assert partition_to_latency_mapping[p] == (128.0, 80.0, 160.0) else: assert partition_to_latency_mapping[p] == (16.0, 32.0, 32.0) transfer_rate_bytes_per_sec = 2 critical_path_latency_sec = get_latency_of_partitioned_graph( partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec ) assert critical_path_latency_sec == 208.0
def test_kl_based_partition(self): class TestModule(torch.nn.Module): def __init__(self): super(TestModule, self).__init__() self.linear = torch.nn.Linear(4, 4) self.b = torch.rand(4) self.c = torch.rand(4) self.d = torch.rand(4) def forward(self, a): add_1 = a + self.b add_2 = add_1 + self.c linear_1 = self.linear(add_1) add_3 = add_2 + linear_1 add_4 = add_2 + self.d add_5 = add_3 + add_4 return add_4 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a]) node_to_latency_mapping = get_node_to_latency_mapping(traced) transfer_rate_bytes_per_sec = 2 devices = [ Device('dev_0', 200, 0), Device('dev_1', 200, 1), Device('dev_2', 200, 2), Device('dev_3', 200, 3) ] partitioner = Partitioner() partitioner_config = PartitionerConfig( devices, mode=PartitionMode.kl_based, transfer_rate_bytes_per_sec=transfer_rate_bytes_per_sec, node_to_latency_mapping=node_to_latency_mapping ) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules self.assertEqual(traced(a), module_with_submodules(a)) dag = ret.dag assert dag.nodes[0] == 176 assert dag.nodes[1] == 112 partition_to_latency_mapping = get_partition_to_latency_mapping( partitioner.partitions, node_to_latency_mapping ) cost = get_latency_of_partitioned_graph( partitioner.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec ) assert cost == 208.
def test_lack_of_devices(self): class TestModule(torch.nn.Module): def forward(self, a, b): return a + b m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) b = torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a, b]) partitioner = Partitioner() devices = [Device("dev_0", 4, 0), Device("dev_1", 4, 1)] partitioner_config = PartitionerConfig(devices, PartitionMode.size_based) catch_runtime_error = False try: ret = partitioner.partition_graph(traced, m, partitioner_config) except RuntimeError: catch_runtime_error = True assert catch_runtime_error
def test_aot_based_partition(self): class TestModule(torch.nn.Module): def __init__(self): super(TestModule, self).__init__() self.b = torch.rand(4) self.c = torch.rand(4) def forward(self, a): add_1 = a + self.b add_2 = self.c + add_1 return add_2 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) node_to_partition_id = {} partition_to_logical_devices = {} count = 0 GraphManipulation.get_size_of_all_nodes(traced, [a]) for node in traced.graph.nodes: if node.op not in {'placeholder', 'get_attr', 'output'}: node_to_partition_id[node] = count partition_to_logical_devices[count] = [0] count += 1 devices = [Device('dev_0', 200, 0)] partitioner_config = PartitionerConfig( devices=devices, mode=PartitionMode.aot_based, node_to_partition_mapping=node_to_partition_id, partition_to_logical_device_mapping=partition_to_logical_devices ) partitioner = Partitioner() ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(module_with_submodules(a), traced(a)) for node in dag.nodes: assert node.size_bytes == 48 assert node.logical_device_ids == [0]
def test_find_single_partition(self): class TestModule(torch.nn.Module): def forward(self, a, b): return a + b m = TestModule() traced = symbolic_trace(m) a = torch.rand(1) b = torch.rand(1) graph_manipulation.get_size_of_all_nodes(traced, [a, b]) partitioner = Partitioner() devices = [ Device("dev_0", 125, 0), Device("dev_1", 125, 1), Device("dev_2", 125, 2) ] partitioner_config = PartitionerConfig(devices) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(traced(a, b), module_with_submodules(a, b)) assert dag.nodes[0].logical_device_ids == [0]
def test_serialize_graph(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) self.e = torch.rand(4) self.conv = torch.nn.Conv2d(3, 3, 2, bias=False) def forward(self, a, b, c): add_1 = a + b conv1 = self.conv(c) linear = self.linear(add_1 + conv1) add_2 = linear + self.e return add_2 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) b = torch.rand(4) c = torch.rand(3, 3, 2, 2) graph_manipulation.get_size_of_all_nodes(traced, [a, b, c]) partitioner = Partitioner() devices = [Device("dev_0", 5000, 0), Device("dev_1", 125, 1)] partitioner_config = PartitionerConfig(devices, PartitionMode.sparse_nn) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules # Fix for now to add type/shape to output for node in traced.graph.nodes: if node.op == "output": node.meta['tensor_meta'] = extract_tensor_metadata(a) for mod in module_with_submodules.modules(): if isinstance(mod, GraphModule): for node in mod.graph.nodes: node.meta['tensor_meta'] = extract_tensor_metadata(a) for node in module_with_submodules.graph.nodes: node.meta['tensor_meta'] = extract_tensor_metadata(a) weights1 = {} weights2 = {} serialized_graph1 = graph_manipulation.serialize_module( traced, weights1) serialized_graph2 = graph_manipulation.serialize_module( module_with_submodules, weights2) assert len(weights1) == 4 assert len(weights2) == 4 assert len(serialized_graph1["nodes"]) == 10 assert len(serialized_graph1["weights"]) == 4 assert len(serialized_graph1["modules"]) == 0 assert len(serialized_graph2["nodes"]) == 6 assert len(serialized_graph2["weights"]) == 4 assert len(serialized_graph2["modules"]) == 1 assert serialized_graph1["weights"]["linear.weight"][ "shape"] == "[4, 4]" assert (serialized_graph1["weights"]["linear.weight"]["dtype"] == "torch.float32") assert (serialized_graph1["weights"]["linear.weight"]["is_quantized"] is False) assert serialized_graph1["nodes"][0]["shape"] == "[4]" assert serialized_graph1["nodes"][0]["dtype"] == "torch.float32" assert serialized_graph1["nodes"][0]["target"] == "a" assert serialized_graph1["nodes"][0]["op_code"] == "placeholder" assert serialized_graph1["nodes"][0]["name"] == "a" assert serialized_graph1["nodes"][6]["args"][0]["name"] == "add_1" assert serialized_graph1["nodes"][6]["args"][0]["is_node"] is True # Test quantization info serialization. x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]]) q_tensor = torch.quantize_per_tensor(x, 1, 0, torch.qint32) q_tensor_channel = torch.quantize_per_channel( x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8) result = graph_manipulation.serialize_tensor_quantization(q_tensor) result2 = graph_manipulation.serialize_tensor_quantization( q_tensor_channel) assert result["qscheme"] == "torch.per_tensor_affine" assert result["q_scale"] == 1.0 assert result2["qscheme"] == "torch.per_channel_affine" assert len(result2["q_per_channel_scales"]) == 2
def test_cost_aware_partition(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, a): add_1 = a + torch.rand(4) add_2 = add_1 + torch.rand(4) linear_1 = self.linear(add_1) add_3 = add_2 + torch.rand(4) add_4 = add_2 + linear_1 add_5 = add_3 + add_4 return add_5 def get_node_to_latency_mapping(fx_module: GraphModule): node_to_latency_mapping: Dict[Node, Nodelatency] = {} for node in fx_module.graph.nodes: if node.op not in {'output', 'placeholder', 'get_attr'}: if node.size_bytes.total_size == node.size_bytes.output_size: node_to_latency_mapping[node] = NodeLatency( node.size_bytes.total_size, 1) else: node_to_latency_mapping[node] = NodeLatency( node.size_bytes.total_size, node.size_bytes.output_size) return node_to_latency_mapping m = MyModule() traced = symbolic_trace(m) a = torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a]) devices = [ Device('dev_0', 125, 0), Device('dev_1', 125, 1), Device('dev_2', 125, 2), Device('dev_3', 125, 3) ] node_to_latency_mapping = get_node_to_latency_mapping(traced) partitioner_config = PartitionerConfig( devices, mode=PartitionMode.cost_aware, transfer_rate_bytes_per_sec=2, node_to_latency_mapping=node_to_latency_mapping) partitioner = Partitioner() ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(traced(a), module_with_submodules(a)) partitions = partitioner.partitions partition_to_latency_mapping = get_partition_to_latency_mapping( partitions, node_to_latency_mapping) critical_path_latency_sec = get_latency_of_partitioned_graph( partitions, partition_to_latency_mapping, partitioner_config.transfer_rate_bytes_per_sec) assert critical_path_latency_sec == 160. def test_kl_based_partition(self): class TestModule(torch.nn.Module): def __init__(self): super(TestModule, self).__init__() self.linear = torch.nn.Linear(4, 4) self.b = torch.rand(4) self.c = torch.rand(4) self.d = torch.rand(4) def forward(self, a): add_1 = a + self.b add_2 = add_1 + self.c linear_1 = self.linear(add_1) add_3 = add_2 + linear_1 add_4 = add_2 + self.d add_5 = add_3 + add_4 return add_4 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) graph_manipulation.get_size_of_all_nodes(traced, [a]) node_to_latency_mapping = get_node_to_latency_mapping(traced) transfer_rate_bytes_per_sec = 2 devices = [ Device('dev_0', 200, 0), Device('dev_1', 200, 1), Device('dev_2', 200, 2), Device('dev_3', 200, 3) ] partitioner = Partitioner() partitioner_config = PartitionerConfig( devices, mode=PartitionMode.kl_based, transfer_rate_bytes_per_sec=transfer_rate_bytes_per_sec, node_to_latency_mapping=node_to_latency_mapping) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules self.assertEqual(traced(a), module_with_submodules(a)) dag = ret.dag assert dag.nodes[0] == 176 assert dag.nodes[1] == 112 partition_to_latency_mapping = get_partition_to_latency_mapping( partitioner.partitions, node_to_latency_mapping) cost = get_latency_of_partitioned_graph( partitioner.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec) assert cost == 208. def test_aot_based_partition(self): class TestModule(torch.nn.Module): def __init__(self): super(TestModule, self).__init__() self.b = torch.rand(4) self.c = torch.rand(4) def forward(self, a): add_1 = a + self.b add_2 = self.c + add_1 return add_2 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) node_to_partition_id = {} partition_to_logical_devices = {} count = 0 GraphManipulation.get_size_of_all_nodes(traced, [a]) for node in traced.graph.nodes: if node.op not in {'placeholder', 'get_attr', 'output'}: node_to_partition_id[node] = count partition_to_logical_devices[count] = [0] count += 1 devices = [Device('dev_0', 200, 0)] partitioner_config = PartitionerConfig( devices=devices, mode=PartitionMode.aot_based, node_to_partition_mapping=node_to_partition_id, partition_to_logical_device_mapping=partition_to_logical_devices ) partitioner = Partitioner() ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(module_with_submodules(a), traced(a)) for node in dag.nodes: assert node.size_bytes == 48 assert node.logical_device_ids == [0] def test_replace_target_nodes_with(self): class testModule(torch.nn.Module): def forward(self, a, b): return a + b m = testModule() traced = symbolic_trace(m) input1 = torch.randn(1) input2 = torch.randn(1) assert (input1 + input2) == traced(input1, input2) graph_manipulation.replace_target_nodes_with( fx_module=traced, old_op="call_function", old_target=operator.add, new_op="call_function", new_target=operator.mul, ) assert (input1 * input2) == traced(input1, input2)
def test_sparse_nn_partition(self): class MyRecommendationModule(torch.nn.Module): def create_mlp(self, num_of_layers: int, input_size: int, output_size: int): layers = torch.nn.ModuleList() for _ in range(num_of_layers): ll = torch.nn.Linear(input_size, output_size) layers.append(ll) layers.append(torch.nn.ReLU()) return layers def __init__(self): super(MyRecommendationModule, self).__init__() layers = self.create_mlp(4, 4, 4) self.bottom_layers = torch.nn.Sequential(*layers) layers = self.create_mlp(3, 24, 24) self.top_layers = torch.nn.Sequential(*layers) self.embedding_layers = torch.nn.ModuleList() el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True) self.embedding_layers.append(el) for i in range(3): el = torch.nn.EmbeddingBag(1000000, 4, mode="sum", sparse=True) self.embedding_layers.append(el) el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True) self.embedding_layers.append(el) def forward(self, a, b, offset): x = self.bottom_layers(a) y = [] c = [] for i in range(len(self.embedding_layers)): temp = torch.randint(10, (8, )) c.append(temp + b) for i in range(len(self.embedding_layers)): if i % 2 == 0: y.append(self.embedding_layers[i](c[i], offset)) else: y.append(self.embedding_layers[i](torch.randint( 10, (8, )), offset)) z = torch.cat([x] + y, dim=1) p = self.top_layers(z) return p m = MyRecommendationModule() a = torch.rand(2, 4) b = torch.randint(10, (8, )) offset = torch.randint(1, (2, )) traced = symbolic_trace(m) graph_manipulation.get_size_of_all_nodes(traced, [a, b, offset]) devices = [ Device("dev_0", 33000000, 0), Device("dev_1", 33000000, 1), Device("dev_2", 33000000, 2) ] partitioner_config = PartitionerConfig(devices, PartitionMode.sparse_nn) partitioner = Partitioner() ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules dag = ret.dag self.assertEqual(traced(a, b, offset), module_with_submodules(a, b, offset)) assert len(module_with_submodules.graph.nodes) == 24
def test_serialize_graph(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) self.e = torch.rand(4) def forward(self, a, b): add_1 = a + b linear = self.linear(add_1) add_2 = linear + self.e return add_2 m = TestModule() traced = symbolic_trace(m) a = torch.rand(4) b = torch.rand(4) GraphManipulation.get_size_of_all_nodes(traced, [a, b]) partitioner = Partitioner() devices = [Device("dev_0", 5000, 0), Device("dev_1", 125, 1)] partitioner_config = PartitionerConfig(devices, is_sparse_nn=True) ret = partitioner.partition_graph(traced, m, partitioner_config) module_with_submodules = ret.module_with_submodules # Fix for now to add type/shape to output for node in traced.graph.nodes: if node.op == "output": node.shape = a.shape node.dtype = a.dtype for mod in module_with_submodules.modules(): if isinstance(mod, GraphModule): for node in mod.graph.nodes: node.shape = a.shape node.dtype = a.dtype for node in module_with_submodules.graph.nodes: node.shape = a.shape node.dtype = a.dtype agm1 = GraphManipulation.AcceleratedGraphModule(traced) agm2 = GraphManipulation.AcceleratedGraphModule(module_with_submodules) assert len(agm1.weights) == 3 assert len(agm2.weights) == 3 assert len(agm1.serialized_graph["nodes"]) == 7 assert len(agm1.serialized_graph["weights"]) == 3 assert len(agm1.serialized_graph["modules"]) == 0 assert len(agm2.serialized_graph["nodes"]) == 5 assert len(agm2.serialized_graph["weights"]) == 3 assert len(agm2.serialized_graph["modules"]) == 1 assert agm1.serialized_graph["weights"]["linear.weight"]["shape"] == "[4, 4]" assert ( agm1.serialized_graph["weights"]["linear.weight"]["dtype"] == "torch.float32" ) assert ( agm1.serialized_graph["weights"]["linear.weight"]["is_quantized"] is False ) assert agm1.serialized_graph["nodes"][0]["shape"] == "[4]" assert agm1.serialized_graph["nodes"][0]["dtype"] == "torch.float32" assert agm1.serialized_graph["nodes"][0]["target"] == "a" assert agm1.serialized_graph["nodes"][0]["op_code"] == "placeholder" assert agm1.serialized_graph["nodes"][0]["name"] == "a" assert agm1.serialized_graph["nodes"][2]["args"][0]["name"] == "a" assert agm1.serialized_graph["nodes"][2]["args"][0]["is_node"] is True # Test quantization info serialization. x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]]) q_tensor = torch.quantize_per_tensor(x, 1, 0, torch.qint32) q_tensor_channel = torch.quantize_per_channel( x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8 ) result = GraphManipulation.serialize_tensor_quantization(q_tensor) result2 = GraphManipulation.serialize_tensor_quantization(q_tensor_channel) assert result["q_scheme"] == "torch.per_tensor_affine" assert result["q_scale"] == 1.0 assert result2["q_scheme"] == "torch.per_channel_affine" assert len(result2["q_per_channel_scales"]) == 2