示例#1
0
    def interaction_function(
        h: torch.FloatTensor,
        r: torch.FloatTensor,
        t: torch.FloatTensor,
        m_r: torch.FloatTensor,
    ) -> torch.FloatTensor:
        """Evaluate the interaction function for given embeddings.

        The embeddings have to be in a broadcastable shape.

        :param h: shape: (batch_size, num_entities, d_e)
            Head embeddings.
        :param r: shape: (batch_size, num_entities, d_r)
            Relation embeddings.
        :param t: shape: (batch_size, num_entities, d_e)
            Tail embeddings.
        :param m_r: shape: (batch_size, num_entities, d_e, d_r)
            The relation specific linear transformations.

        :return: shape: (batch_size, num_entities)
            The scores.
        """
        # project to relation specific subspace, shape: (b, e, d_r)
        h_bot = h @ m_r
        t_bot = t @ m_r
        # ensure constraints
        h_bot = clamp_norm(h_bot, p=2, dim=-1, maxnorm=1.0)
        t_bot = clamp_norm(t_bot, p=2, dim=-1, maxnorm=1.0)

        # evaluate score function, shape: (b, e)
        return -linalg.vector_norm(h_bot + r - t_bot, dim=-1)**2
示例#2
0
    def score_h(self, rt_batch: torch.LongTensor, slice_size: Optional[int] = None) -> torch.FloatTensor:  # noqa: D102
        # Get embeddings
        h = self.entity_embeddings(indices=None)
        r = self.relation_embeddings(indices=rt_batch[:, 0])
        t = self.entity_embeddings(indices=rt_batch[:, 1])

        # TODO: Use torch.cdist (see note above in score_hrt())
        return -linalg.vector_norm(h[None, :, :] + (r[:, None, :] - t[:, None, :]), dim=-1, ord=self.scoring_fct_norm)
示例#3
0
文件: trans_e.py 项目: pykeen/pykeen
    def score_t(self, hr_batch: torch.LongTensor,
                **kwargs) -> torch.FloatTensor:  # noqa: D102
        # Get embeddings
        h = self.entity_embeddings(indices=hr_batch[:, 0])
        r = self.relation_embeddings(indices=hr_batch[:, 1])
        t = self.entity_embeddings(indices=None)

        # TODO: Use torch.cdist (see note above in score_hrt())
        return -linalg.vector_norm(
            h[:, None, :] + r[:, None, :] - t[None, :, :],
            dim=-1,
            ord=self.scoring_fct_norm)
示例#4
0
    def score_hrt(self, hrt_batch: torch.LongTensor) -> torch.FloatTensor:  # noqa: D102
        # Get embeddings
        h = self.entity_embeddings(indices=hrt_batch[:, 0])
        r = self.relation_embeddings(indices=hrt_batch[:, 1])
        t = self.entity_embeddings(indices=hrt_batch[:, 2])

        # TODO: Use torch.cdist
        #  There were some performance/memory issues with cdist, cf.
        #  https://github.com/pytorch/pytorch/issues?q=cdist however, @mberr thinks
        #  they are mostly resolved by now. A Benefit would be that we can harness the
        #  future (performance) improvements made by the core torch developers. However,
        #  this will require some benchmarking.
        return -linalg.vector_norm(h + r - t, dim=-1, ord=self.scoring_fct_norm, keepdim=True)
示例#5
0
文件: trans_h.py 项目: pykeen/pykeen
    def score_hrt(self, hrt_batch: torch.LongTensor,
                  **kwargs) -> torch.FloatTensor:  # noqa: D102
        # Get embeddings
        h = self.entity_embeddings(indices=hrt_batch[:, 0])
        d_r = self.relation_embeddings(indices=hrt_batch[:, 1])
        w_r = self.normal_vector_embeddings(indices=hrt_batch[:, 1])
        t = self.entity_embeddings(indices=hrt_batch[:, 2])

        # Project to hyperplane
        ph = h - torch.sum(w_r * h, dim=-1, keepdim=True) * w_r
        pt = t - torch.sum(w_r * t, dim=-1, keepdim=True) * w_r

        # Regularization term
        self.regularize_if_necessary()

        return -linalg.vector_norm(ph + d_r - pt, ord=2, dim=-1, keepdim=True)
示例#6
0
    def update(self, *tensors: torch.FloatTensor) -> None:  # noqa: D102
        if len(tensors) != 3:
            raise KeyError("Expects exactly three tensors")
        if self.apply_only_once and self.updated:
            return
        entity_embeddings, normal_vector_embeddings, relation_embeddings = tensors
        # Entity soft constraint
        self.regularization_term += torch.sum(functional.relu(linalg.vector_norm(entity_embeddings, dim=-1) ** 2 - 1.0))

        # Orthogonality soft constraint
        d_r_n = functional.normalize(relation_embeddings, dim=-1)
        self.regularization_term += torch.sum(
            functional.relu(torch.sum((normal_vector_embeddings * d_r_n) ** 2, dim=-1) - self.epsilon),
        )

        self.updated = True
示例#7
0
文件: trans_h.py 项目: pykeen/pykeen
    def score_h(self, rt_batch: torch.LongTensor,
                **kwargs) -> torch.FloatTensor:  # noqa: D102
        # Get embeddings
        h = self.entity_embeddings(indices=None)
        rel_id = rt_batch[:, 0]
        d_r = self.relation_embeddings(indices=rel_id)
        w_r = self.normal_vector_embeddings(indices=rel_id)
        t = self.entity_embeddings(indices=rt_batch[:, 1])

        # Project to hyperplane
        ph = h[None, :, :] - torch.sum(w_r[:, None, :] * h[None, :, :],
                                       dim=-1,
                                       keepdim=True) * w_r[:, None, :]
        pt = t - torch.sum(w_r * t, dim=-1, keepdim=True) * w_r

        # Regularization term
        self.regularize_if_necessary()

        return -linalg.vector_norm(
            ph + (d_r[:, None, :] - pt[:, None, :]), ord=2, dim=-1)
示例#8
0
    def score_t(self,
                hr_batch: torch.LongTensor,
                slice_size: Optional[int] = None
                ) -> torch.FloatTensor:  # noqa: D102
        # Get embeddings
        h = self.entity_embeddings(indices=hr_batch[:, 0])
        d_r = self.relation_embeddings(indices=hr_batch[:, 1])
        w_r = self.normal_vector_embeddings(indices=hr_batch[:, 1])
        t = self.entity_embeddings(indices=None)

        # Project to hyperplane
        ph = h - torch.sum(w_r * h, dim=-1, keepdim=True) * w_r
        pt = t[None, :, :] - torch.sum(w_r[:, None, :] * t[None, :, :],
                                       dim=-1,
                                       keepdim=True) * w_r[:, None, :]

        # Regularization term
        self.regularize_if_necessary()

        return -linalg.vector_norm(
            ph[:, None, :] + d_r[:, None, :] - pt, ord=2, dim=-1)
示例#9
0
    def interaction_function(
        h: torch.FloatTensor,
        r: torch.FloatTensor,
        t: torch.FloatTensor,
    ) -> torch.FloatTensor:
        """Evaluate the interaction function of ComplEx for given embeddings.

        The embeddings have to be in a broadcastable shape.

        WARNING: No forward constraints are applied.

        :param h: shape: (..., e, 2)
            Head embeddings. Last dimension corresponds to (real, imag).
        :param r: shape: (..., e, 2)
            Relation embeddings. Last dimension corresponds to (real, imag).
        :param t: shape: (..., e, 2)
            Tail embeddings. Last dimension corresponds to (real, imag).

        :return: shape: (...)
            The scores.
        """
        # Decompose into real and imaginary part
        h_re = h[..., 0]
        h_im = h[..., 1]
        r_re = r[..., 0]
        r_im = r[..., 1]

        # Rotate (=Hadamard product in complex space).
        rot_h = torch.stack(
            [
                h_re * r_re - h_im * r_im,
                h_re * r_im + h_im * r_re,
            ],
            dim=-1,
        )
        # Workaround until https://github.com/pytorch/pytorch/issues/30704 is fixed
        diff = rot_h - t
        scores = -linalg.vector_norm(diff, dim=(-2, -1))

        return scores