示例#1
0
文件: rnn.py 项目: Jsmilemsj/pytorch
def _symbolic_pad_packed_sequence(g, input, batch_first=False, padding_value=0.0):
    # See comment on _symbolic_pack_padded_sequence
    data, lengths = g.op("PadPacked", input.data, input.batch_sizes, outputs=2)
    if batch_first:
        from torch.onnx import symbolic
        data = symbolic.t(data)
    return data, lengths
示例#2
0
def _symbolic_pack_padded_sequence(g, input, lengths, batch_first=False):
    if batch_first:
        from torch.onnx import symbolic
        input = symbolic.t(g, input)
    # There currently is no PackPadded operator in ONNX. We rely on an
    # optimization pass to remove this later. It is an error if all
    # PackPadded operators cannot be optimized out.
    return g.op("PackPadded", input, lengths, outputs=2)
示例#3
0
文件: rnn.py 项目: Jsmilemsj/pytorch
def _symbolic_pack_padded_sequence(g, input, lengths, batch_first=False):
    if batch_first:
        from torch.onnx import symbolic
        input = symbolic.t(input)
    # There currently is no PackPadded operator in ONNX. We rely on an
    # optimization pass to remove this later. It is an error if all
    # PackPadded operators cannot be optimized out.
    return g.op("PackPadded", input, lengths, outputs=2)
示例#4
0
def _symbolic_pad_packed_sequence(g,
                                  input,
                                  batch_first=False,
                                  padding_value=0.0):
    # See comment on _symbolic_pack_padded_sequence
    data, lengths = g.op("PadPacked", input.data, input.batch_sizes, outputs=2)
    if batch_first:
        from torch.onnx import symbolic
        data = symbolic.t(g, data)
    return data, lengths
示例#5
0
def nonzero(g, input):
    return t(g, g.op('NonZero', _cast_Float(g, input, False)))